Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Hệ thống kiến thức và phương pháp giải Toán THPT - Võ Công Trường

Tài liệu gồm 68 trang, được biên soạn bởi thầy Võ Công Trường, hệ thống kiến thức và phương pháp giải Toán THPT, giúp học sinh ôn thi tốt nghiệp THPT môn Toán. Mục lục tài liệu hệ thống kiến thức và phương pháp giải Toán THPT – Võ Công Trường: Chủ đề 1 : Khảo sát hàm số và các bài toán liên quan. 1. Bảng đạo hàm. 2. Sự biến thiên. 3. Cực trị. 4. Giá trị lớn nhất – giá trị nhỏ nhất. 5. Đường tiệm cận. 6. Khảo sát và vẽ đồ thị của hàm số. 7. Tiếp tuyến. 8. Sự tương giao (dấu hiệu nhận biết: trong đề có từ: cắt, tiếp xúc, giao điểm hay điểm chung). 9. Ứng dụng sự tương giao. 10. Phép suy đồ thị. Chủ đề 2 : Lũy thừa, mũ và lôgarít. 1. Công thức. 2. Hàm số mũ và hàm số lôgarít. 3. Phương trình, bất phương trình mũ, lôgarit. 4. Ứng dụng hàm mũ – lôgarit vào bài toán thực tế. Chủ đề 3 : Nguyên hàm, tích phân và ứng dụng. 1. Nguyên hàm. 2. Tích phân. 3. Ứng dụng tích phân để tính diện tích, thể tích. Chủ đề 4 : Số phức. 1. Công thức, phép toán. 2. Phương trình bậc hai. 3. Tìm số phức thỏa điều kiện cho trước. 4. Tìm tập hợp điểm biểu diễn số phức. Chủ đề 5 : Khối đa diện. 1. Thể tích khối đa diện. 2. Ứng dụng thể tích. 3. Một số hình đa diện thường gặp. 4. Công thức đặc biệt tính thể tích khối tứ diện ABCD. Chủ đề 6 : Khối tròn xoay. 1. Thể tích, diện tích hình tròn xoay. 2. Sự tương giao giữa hình tròn xoay và hình đa diện. Chủ đề 7 : Phương pháp tọa độ trong không gian. 1. Vectơ và tọa độ. 2. Mặt phẳng. 3. Đường thẳng. 4. Mặt cầu. 5. Vị trí tương đối. 6. Khoảng cách. 7. Góc. 8. Hình chiếu, điểm đối xứng. 9. Tìm tọa độ điểm thỏa điều kiện lớn nhất, nhỏ nhất. 10. Tọa độ các tâm của tam giác. [ads] Phụ lục Phương trình, bất phương trình và hệ phương trình. 1. Nhị thức bậc nhất. 2. Tam thức bậc hai, phương trình bậc hai. 3. Phương trình bậc ba. 4. Phương trình bậc bốn trùng phương. 5. Phương trình chứa căn thức. 6. Bất phương trình chứa căn thức. 7. Phương trình, bất phương trình chứa dấu giá trị tuyệt đối. 8. Hệ phương trình. Bất đẳng thức. Lượng giác. Tổ hợp và xác suất. Cấp số cộng – cấp số nhân. Giới hạn. Hình học (tổng hợp) phẳng. 1. Hệ thức lượng trong tam giác. 2. Hệ thức lượng trong tứ giác. 3. Hệ thức lượng trong đường tròn. 4. Tâm của tam giác. Hình học tọa độ trong mặt phẳng. 1. Tọa độ. 2. Phương trình đường thẳng. 3. Phương trình đường tròn. 4. Elíp. 5. Công thức tính diện tích tam giác, hình bình hành bằng tọa độ. Phép biến hình trong mặt phẳng. Hình học không gian (tổng hợp) lớp 11. 1. Quan hệ song song. Dạng 1: Chứng minh quan hệ song song. Dạng 2: Tìm giao tuyến của 2 mặt phẳng. Dạng 3: Tìm giao điểm của đường thẳng và mặt phẳng. Dạng 4: Tìm thiết diện của hình chóp, lăng trụ được cắt bởi mặt phẳng. 2. Quan hệ vuông góc. Dạng 1: Chứng minh quan hệ vuông góc. Dạng 2: Tìm hình chiếu của điểm lên mặt phẳng. Dạng 3: Tính góc. Dạng 4: Tính khoảng cách. Sơ đồ tư duy Toán THPT.

Nguồn: toanmath.com

Đọc Sách

Phát triển đề thi tham khảo THPT Quốc gia 2020 môn Toán
Dựa trên đề thi tham khảo kỳ thi THPT Quốc gia năm 2020 môn Toán do Bộ Giáo dục và Đào tạo công bố, vừa qua, tập thể quý thầy, cô giáo nhóm Toán VD – VDC đã biên soạn bộ câu hỏi và bài tập phát triển đề thi tham khảo THPT Quốc gia 2020 môn Toán, nhằm giúp các em học sinh khối 12 có được tài liệu ôn tập bám sát, chất lượng để chuẩn bị cho kỳ thi THPT Quốc gia môn Toán năm học 2019 – 2020. Tài liệu phát triển đề thi tham khảo THPT Quốc gia 2020 môn Toán gồm có 42 trang, là sản phẩm đặc biệt của Tổ Phản Biện Các Sản Phẩm Quan Trọng Của Nhóm Toán VD – VDC. Với mỗi câu trong đề, tài liệu bổ sung thêm 3-5 câu hỏi và bài toán tương tự, có đáp án và lời giải chi tiết. Trích dẫn bộ đề phát triển đề thi tham khảo THPT Quốc gia 2020 môn Toán: + Định hướng xây dựng bài toán: Bài toán giữ nguyên ý tưởng câu 43 (sử dụng phương pháp đặt ẩn phụ) thay đổi cách đặt vấn đề và phương trình mũ thay cho phương trình logarit: “Tính tổng T các giá trị nguyên của tham số m để phương trình 3^x + (m^2 – m)3^-x = 2m có đúng hai nghiệm phân biệt nhỏ hơn 1/log3”. [ads] + Phát triển câu 32, sử dụng ứng dụng của tích vô hướng vào việc quỹ tích điểm M thỏa mãn đẳng thức cho trước, bài toán có sử dụng việc khai thác điểm trung gian: “Trong không gian Oxyz, cho A(2;0;4) và B(0;-6;0), M là một điểm bất kỳ thỏa mãn 3MA^2 + 2MB^2 = 561/280AB^2. Khi đó M thuộc mặt cầu có bán kính là giá trị nào dưới đây?” + Phát triển câu 50 thành bài toán tìm khoảng đồng biến và nghịch biến của hàm số chứa dấu giá trị tuyệt đối: “Cho hàm số đa thức f(x) có đạo hàm tràm trên R. Biết f(0) = 0 và đồ thị hàm số y = f'(x) như hình sau. Hàm số g(x) = |4f(x) + x^2| đồng biến trên khoảng nào dưới đây?”
Phân tích một số câu vận dụng trong đề minh họa THPTQG 2020 môn Toán
Tài liệu gồm có 39 trang được biên soạn bởi thầy giáo Nguyễn Minh Nhiên, trình bày lời giải chi tiết và đi sâu phân tích một số bài toán vận dụng – vận dụng cao trong đề minh họa THPT Quốc gia môn Toán năm học 2019 – 2020; cụ thể đó là các bài toán: câu 38, câu 43, câu 46, câu 48, câu 49, câu 50; qua đó giúp học sinh có những cách tiếp cận khác nhau đối với những dạng toán VD – VDC trong các đề thi THPT quốc gia. Trong mỗi bài toán cụ thể, tác giả trình bày lời giải chi tiết của bài toán để tìm đáp án theo nhiều cách khác nhau, với mỗi cách đều có nhận xét về tính ưu việt của phương pháp; sau đó là một số bài toán tương tự, phát triển và mở rộng bài toán gốc, kèm theo hướng dẫn giải. Trích dẫn tài liệu phân tích một số câu vận dụng trong đề minh họa THPTQG 2020 môn Toán: + Có bao nhiêu cặp số nguyên (x;y) thỏa mãn log_3 (3x + 3) + x = 2y + 9^y? A. 2019. B. 6. C. 2020. D. 4. +  Cho hàm số y = f(x) = ax^3 + bx^2 + cx + d có các điểm cực trị là 0;a (2 < a < 3) và có đồ thị là đường cong như hình vẽ. Đặt g(x) = 2019f(f(x)) + 2020. Số điểm cực trị của hàm số là? A. 2. B. 8. C. 10. D. 6. + Cho tứ diện ACFG có số đo các cạnh lần lượt là AC = AF = FC = a√2, AG = a√3, GF = GC = a. Thể tích của khối tứ diện ACFG bằng? Xem thêm : Đáp án và lời giải chi tiết đề minh họa THPT Quốc gia 2020 môn Toán
Phân tích và bình luận đề tham khảo THPTQG 2020 môn Toán
giới thiệu đến quý thầy, cô giáo cùng các em học sinh tài liệu phân tích và bình luận đề tham khảo THPTQG 2020 môn Toán do thầy giáo Nguyễn Xuân Chung biên soạn. Tài liệu gồm có 13 trang trình bày đáp án và lời giải chi tiết đề minh họa THPT Quốc gia 2020 môn Toán cùng với những phân tích và bình luận của tác giả trong quá trình đi tìm lời giải cho các bài toán, từ đó giúp học sinh hiểu được cách tiếp cận và giải quyết các dạng toán trong đề thi. Thông qua cách nhìn tổng thể toàn bài, tác giả định hướng được một số nội dung kiến thức chương trình và những kỹ năng cần thiết để ôn tập và rèn luyện cho học sinh, từ đó các thầy cô có thể tự ra đề cho các em học sinh luyện tập. Theo nhận định của tác giả: Số câu VDC hơi nhiều so với phần VD, ta có thể điều chỉnh 1 câu VDC ở phần Mũ và Logarit và 1 câu VDC phần Hàm số sang phần VD thì khi đó cân đối được ma trận đề; hoặc là chủ đề Hàm số 12 câu thêm vào VD khai triển Newton, chủ đề Mũ và Logarit là 7 câu thêm vào VD Số phức, khi đó có nghĩa là phân loại học sinh Khá – Giỏi thì chiếm khoảng 2,0 điểm là hợp lý. [ads] Trích dẫn một số phân tích và lời bình trong tài liệu phân tích và bình luận đề tham khảo THPTQG 2020 môn Toán: + HS biết đặt ẩn phụ và chuyển từ phương trình logarit về phương trình đa thức. Từ đó biện luận số nghiệm của phương trình thỏa mãn YCBT. Ở đây để giảm nhẹ thì ta có thể đưa về trường hợp đặc biệt của phương trình hoặc là khảo sát hàm số đơn giản và suy ra kết quả tương đối dễ dàng. Tuy nhiên cũng yêu cầu HS nắm chắc các kiến thức về hàm số mũ hay logarit. Ngoài ra ta có thể ra các bài toán phương trình mũ chứa tham số. + HS biết từ các điểm cắt của hai đồ thị suy ra công thức tính diện tích hình phẳng qua một bước suy luận và tính toán đơn giản, qua đó HS hiểu được ứng dụng đơn giản của tích phân trong hình học. Như thế ta có thể thay các đồ thị khác hay như đường thẳng và Parabol thì có bài toán mới. + Ta có thể ra câu hỏi về hàm số bậc ba: Mục tiêu là: Đồ thị này của hàm loại nào? (Trong ba loại cơ bản) Hệ số a dương hay âm? Có thể không cần dùng đạo hàm hoặc dùng thêm đạo hàm ở mức thấp – Không quá cồng kềnh – Tức là tìm thêm điểm tiếp xúc, điểm cắt.
Phát triển đề minh họa THPT Quốc gia 2020 môn Toán - Lê Văn Đoàn
Nhằm giúp các em học sinh khối 12 tiếp cận với các bài toán tương tự trong đề minh họa THPT Quốc gia 2020 môn Toán do Bộ Giáo dục và Đào tạo công bố (03/04/2020), giới thiệu đến các em tài liệu phát triển đề minh họa THPT Quốc gia 2020 môn Toán; tài liệu gồm có 80 trang được biên soạn bởi thầy Lê Văn Đoàn, phân tích và giải chi tiết các câu hỏi và bài toán trong đề thi, dưới mỗi câu, tác giả bổ sung thêm 8 câu hỏi và bài toán tương tự (có đáp án) giúp học sinh rèn luyện. Trích dẫn tài liệu phát triển đề minh họa THPT Quốc gia 2020 môn Toán – Lê Văn Đoàn: + Cho hai đường thằng song song. Trên đường thứ nhất có 10 điểm, trên đường thứ hai có 15 điểm, có bao nhiêu tam giác được tạo thành từ các điểm đã cho. + Cho hàm số y = f(x) có đạo hàm liên tục trên R và bảng biến thiên bên dưới. Xét hàm số g(x) = e^(3f(2 – x) + 1) + 3^f(2 – x). Số điểm cực đại của đồ thị hàm số y = g(|x|) là? [ads] + Cho hàm số y = f(x) liên tục trên R và có đồ thị như hình vẽ. Gọi S là tập hợp tất cả các giá trị nguyên của tham số m để phương trình f(sinx) = sinx + m có nghiệm thuộc khoảng (0;pi). Tổng các phần tử của S bằng? + Gọi S là tập hợp tất cả các giá trị thực của tham số m để tồn tại duy nhất cặp (x;y) thỏa mãn đồng thời các điều kiện log(x^2 + y^2 + 2) (4x + 4y – 4) và x^2 + y^2 + 2x – 2y + 2 – m = 0. Tổng các phần tử của S bằng? + Cho tập hợp A = {1; 2; 3; 4; 5}. Gọi S là tập hợp các số tự nhiên có 5 chữ số trong đó chữ số 3 có mặt đúng ba lần, các chữ số còn lại có mặt không quá một lần. Chọn ngẫu nhiên một số từ S, xác suất để số được chọn chia hết cho 3 bằng?