Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề tuyển sinh môn Toán (chuyên) năm 2020 2021 sở GD ĐT Bình Phước

Nội dung Đề tuyển sinh môn Toán (chuyên) năm 2020 2021 sở GD ĐT Bình Phước Bản PDF - Nội dung bài viết Đề tuyển sinh môn Toán (chuyên) năm 2020 2021 sở GD ĐT Bình Phước Đề tuyển sinh môn Toán (chuyên) năm 2020 2021 sở GD ĐT Bình Phước Đề tuyển sinh lớp 10 môn Toán (chuyên) năm 2020 - 2021 của sở GD&ĐT Bình Phước là một bài thi với nội dung phong phú và đa dạng. Đề bao gồm 6 bài toán dạng tự luận, được thi sinh phải giải quyết trong thời gian 150 phút. Kỳ thi sẽ diễn ra vào Chủ Nhật ngày 19 tháng 07 năm 2020. Một trong những bài toán trong đề tuyển sinh là "Tìm tất cả các giá trị của m để đường thẳng (d): y = 2x - m cắt parabol (P): y = x^2 tại hai điểm phân biệt có hoành độ dương." Đây là một bài toán đòi hỏi thí sinh phải áp dụng kiến thức về đường thẳng và parabol để giải quyết. Bài toán khác "Tìm tất cả các giá trị của m để phương trình x^2 + mx + 8 = 0 và phương trình x^2 + x + m = 0 có ít nhất một nghiệm chung" đòi hỏi sự hiểu biết sâu rộng về tính chất của các phương trình bậc hai. Ngoài ra, bài toán "Chứng minh rằng với a, b, c là các số thực khác 0 thì tồn tại ít nhất một trong các phương trình có nghiệm" là bài tập thách thức đòi hỏi sự logic và sáng tạo trong suy luận. Từ những bài toán trong đề tuyển sinh môn Toán (chuyên) năm 2020 - 2021 sở GD&ĐT Bình Phước, thí sinh sẽ có cơ hội thể hiện kiến thức và kỹ năng của mình một cách toàn diện và sáng tạo.

Nguồn: sytu.vn

Đọc Sách

Đề tuyển sinh lớp 10 môn Toán (chuyên) năm 2022 - 2023 trường chuyên Sơn La
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chính thức kỳ thi tuyển sinh vào lớp 10 môn Toán (chuyên) năm học 2022 – 2023 trường THPT chuyên Sơn La, tỉnh Sơn La; đề thi dành cho thí sinh thi vào các lớp 10 chuyên Toán và chuyên Tin học; kỳ thi được diễn ra vào thứ Ba ngày 07 tháng 06 năm 2022. Trích dẫn đề tuyển sinh lớp 10 môn Toán (chuyên) năm 2022 – 2023 trường chuyên Sơn La : + Tìm giá trị của tham số k để đường thẳng (d1): y = -x + 2 cắt đường thẳng (d2): y = 2x + 3 – k tại một điểm nằm trên trục hoành. + Trong mặt phẳng tọa độ Oxy, cho parabol (P): y = x2 và đường thẳng (d): y = 2mx – m + 1 (với m là tham số). Tìm tất cả các giá trị của m để (d) cắt (P) tại hai điểm phân biệt có hoành độ x1 và x2 thỏa mãn |x1 – x2| > 3. + Cho tam giác ABC có ba góc nhọn (AB > AC) nội tiếp đường tròn (O; R). Đường cao AH của tam giác ABC cắt đường tròn (O; R) tại điểm thứ hai là D. Kẻ DM vuông góc với AB tại M. a) Chứng minh tứ giác BMHD nội tiếp được đường tròn và DA là tia phân giác của góc MDC. b) Từ D kẻ DN vuông góc với đường thẳng AC tại N. Chứng minh ba điểm M, H, N thẳng hàng. c) Cho P = AB2 + AC2 + CD2 + BD2. Tính giá trị biểu thức P theo R.
Đề tuyển sinh lớp 10 THPT môn Toán năm 2022 - 2023 sở GDĐT Hưng Yên
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chính thức kỳ thi tuyển sinh vào lớp 10 THPT môn Toán năm học 2022 – 2023 sở Giáo dục và Đào tạo tỉnh Hưng Yên; đề thi mã đề 117 gồm 04 trang với 50 câu hỏi và bài toán hình thức trắc nghiệm khách quan, thời gian học sinh làm bài thi là 90 phút (không kể thời gian giám thị phát đề).
Đề tuyển sinh lớp 10 môn Toán (chung) năm 2022 - 2023 sở GDĐT Bà Rịa - Vũng Tàu
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chính thức tuyển sinh vào lớp 10 môn Toán (chung) năm học 2022 – 2023 sở Giáo dục và Đào tạo tỉnh Bà Rịa – Vũng Tàu; kỳ thi được diễn ra vào thứ Tư ngày 08 tháng 06 năm 2022. Trích dẫn đề tuyển sinh lớp 10 môn Toán (chung) năm 2022 – 2023 sở GD&ĐT Bà Rịa – Vũng Tàu : + Một người đi xe máy từ địa điểm A đến địa điểm B trên quãng đường 100 km. Khi từ B về A người đó đã giảm vận tốc 10 km/h so với lúc đi nên thời gian lúc về nhiều hơn thời gian lúc đi là 30 phút. Tính vận tốc của người đó lúc đi. + Từ điểm M nằm bên ngoài đường tròn (O), kẻ hai tiếp tuyến MA, MB của (O) (A và B là hai tiếp điểm). Một đường thẳng qua M và không đi qua O cắt (O) tại hai điểm C và D (C nằm giữa M, D và A thuộc cung nhỏ CD). a) Chứng minh tứ giác AMBO nội tiếp. b) Chứng minh MA2 = MC.MD. c) Gọi I là giao điểm của AB và MO. Chứng minh tứ giác CDOI nội tiếp. d) Kẻ đường thẳng qua D vuông góc với MO cắt (O) tại E khác D. Chứng minh ba điểm C, I, E thẳng hàng. + Với các số thực x, y, z thỏa mãn x >= 1, y >= 1, z >= 1 và x2 + 2y2 + 3z2 = 15. Tìm giá trị nhỏ nhất của biểu thức P = x + y + z.
Đề tuyển sinh lớp 10 THPT môn Toán năm 2022 - 2023 sở GDĐT Lạng Sơn
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chính thức kỳ thi tuyển sinh vào lớp 10 THPT môn Toán năm học 2022 – 2023 sở Giáo dục và Đào tạo tỉnh Lạng Sơn. Trích dẫn đề tuyển sinh lớp 10 THPT môn Toán năm 2022 – 2023 sở GD&ĐT Lạng Sơn : + Cho phương trình bậc hai với tham số m: x2 – 2(m + 1)x + 2m – 3 = 0 (1). 1. Giải phương trình (1) khi m = 0. 2. Chứng minh rằng phương trình (1) luôn có hai nghiệm phân biệt x1 và x2 với mọi m. Tìm tất cả các giá trị của m thỏa mãn: x1 + x2 – 2x1x2 = 1. + Giải các phương trình và hệ phương trình sau. + Cho đường tròn (O) đường kính AB. Dây cung MN vuông góc với AB, (AM < BM). Hai đường thẳng BM và NA cắt nhau tại K. Gọi H là chân đường vuông góc kẻ từ K đến đường thẳng AB. a. Chứng minh rằng tứ giác AHKM nội tiếp trong một đường tròn. b. Chứng minh rằng NB.HK = AN.HB. c. Chứng minh HM là tiếp tuyến của đường tròn (O).