Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi thử Toán vào 10 lần 1 năm 2023 - 2024 phòng GDĐT Lạng Giang - Bắc Giang

THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi thử môn Toán tuyển sinh vào lớp 10 THPT lần 1 năm học 2023 – 2024 phòng Giáo dục và Đào tạo UBND huyện Lạng Giang, tỉnh Bắc Giang; đề thi hình thức 30% trắc nghiệm + 70% tự luận, thời gian làm bài 120 phút, đề thi có đáp án và lời giải chi tiết; kỳ thi được diễn ra vào ngày 22 tháng 03 năm 2023. Trích dẫn Đề thi thử Toán vào 10 lần 1 năm 2023 – 2024 phòng GD&ĐT Lạng Giang – Bắc Giang : + Nhân dịp cuối năm, ở các siêu thị đã đưa ra nhiều hình thức khuyến mãi. Ở siêu thị Big C giá áo sơ mi nữ nhãn hiệu Blue được giảm giá như sau: Mua áo thứ I giảm 15% so với giá niêm yết, mua áo thứ II được giảm tiếp 10% so với giá đã giảm của áo thứ I, mua áo thứ III sẽ được giảm thêm 12% so với giá đã giảm của áo thứ II nên áo thứ 3 chỉ còn 269280 đồng. Giá niêm yết của loại áo sơ mi trên trong siêu thị là: A. 400000 đồng B. 410000 đồng C. 420000 đồng D. 450000 đồng. + Năm học 2022-2023, học kì I, trường THCS A có 500 học sinh đạt loại khá và giỏi. Học kì II, số học sinh khá tăng 2%, số học sinh giỏi tăng 4% nên tổng số học sinh khá và giỏi là 513 học sinh. Nhà trường phát thưởng cho học sinh đạt thành tích cho học kì II như sau: Mỗi học sinh giỏi là 15 quyển tập, mỗi học sinh khá là 10 quyển tập. Biết giá mỗi quyển tập bán trên thị trường là 9 500 đồng/quyển. Do mua số lượng lượng lớn công ty cung cấp có chính sách như sau: Nếu hóa đơn trên 40 000 000 đồng thì được giảm giá 5%; nếu hóa đơn trên 50 000 000 đồng thì được giảm giá 8%; nếu hóa đơn trên 60 000 000 đồng thì được giảm giá 10%. Hỏi nhà trường phải trả số tiền mua tập làm phần thưởng là bao nhiêu? + Cho đường tròn (O;R) có đường kính BC. Trên tia đối của tia BC lấy điểm A sao cho BO BA 2. Vẽ tiếp tuyến AD với đường tròn (O) (D là tiếp điểm) và dây cung DE của đường tròn (O) vuông góc với BC. 1. Chứng minh AE là tiếp tuyến của đường tròn (O). 2. Vẽ đường kính DF của đường tròn(O). Gọi P là giao điểm của EC và DF, G là giao điểm của hai đường thẳng BD và AE. Chứng minh BC EF và PO GE PC GB. 3. Vẽ cát tuyến AMN của đường tròn (O) (cát tuyến không đi qua O), các tiếp tuyến tại M và N của đường tròn (O) cắt nhau tại K. Chứng minh ba điểm KDE thẳng hàng.

Nguồn: toanmath.com

Đọc Sách

Đề tuyển sinh 10 môn Toán năm 2020 - 2021 trường chuyên Lê Quý Đôn - Khánh Hòa
Đề tuyển sinh 10 môn Toán năm 2020 – 2021 trường chuyên Lê Quý Đôn – Khánh Hòa gồm có 01 trang với 05 bài toán dạng tự luận, thời gian học sinh làm bài thi là 150 phút (không kể thời gian phát đề); kỳ thi được diễn ra ngày 17 tháng 07 năm 2020. Trích dẫn đề tuyển sinh 10 môn Toán năm 2020 – 2021 trường chuyên Lê Quý Đôn – Khánh Hòa : + Cho P(x) = ax2 + bx + c là số nguyên với mọi x là số nguyên. Chứng minh rằng: 2a, b + c, c là các số nguyên. + Cho x, y là các số thực dương và x5 − y3 ≥ 2x. Chứng minh rằng x3 ≥ 2y. + Để xác thực tài khoản của người dùng A, một ứng dụng yêu cầu người đó thiết lập một mật khẩu là một số tự nhiên gồm 3 chữ số và chia hết cho 6, trong đó các chữ số phải lớn hơn 4. Hỏi người dùng A có thể tạo ra bao nhiêu mật khẩu theo yêu cầu trên.
Đề tuyển sinh lớp 10 chuyên môn Toán (chung) năm 2020 - 2021 sở GDĐT Hà Nam
Đề tuyển sinh lớp 10 chuyên môn Toán (chung) năm 2020 – 2021 sở GD&ĐT Hà Nam gồm 01 trang với 05 bài toán dạng tự luận, thời gian học sinh làm bài thi là 120 phút, kỳ thi được diễn ra ngày … tháng 07 năm 2020. Trích dẫn đề tuyển sinh lớp 10 chuyên môn Toán (chung) năm 2020 – 2021 sở GD&ĐT Hà Nam : + Cho hàm số y = ax2 (a khác 0) có đồ thị là parabol như hình vẽ. Xác định hệ số a. + Cho phương trình 12×2 = x + m2 (với m là tham số). Chứng minh phương trình đã cho luôn có hai nghiệm phân biệt x1, x2 với mọi m ∈ R. Tìm các giá trị của m để x1 = p320 − x32. + Cho đường tròn (O), đường kính AB cố định. Điểm H cố định nằm giữa hai điểm A và O sao cho AH < OH. Kẻ dây cung MN vuông góc với AB tại H. Gọi C là điểm tùy thuộc cung lớn MN sao cho C không trùng với M, N và B. Gọi K là giao điểm của AC và MN. 1. Chứng minh tứ giác BCKH nội tiếp. 2. Chứng minh tam giac AMK đồng dạng với tam giác ACM. 3. Cho độ dài đoạn thẳng AH = a. Tính AK.AC − HA.HB theo a . 4. Gọi I là tâm đường tròn ngoại tiếp tam giác MKC. Xác định vị vị trí của điểm C để độ dài đoạn thẳng IN nhỏ nhất.
Đề tuyển sinh lớp 10 chuyên môn Toán (chuyên) năm 2020 2021 sở GDĐT Gia Lai
Đề tuyển sinh lớp 10 chuyên môn Toán (chuyên) năm 2020 – 2021 sở GD&ĐT Gia Lai gồm có 01 trang với 05 bài toán dạng tự luận, thời gian học sinh làm bài thi là 120 phút. Trích dẫn đề tuyển sinh lớp 10 chuyên môn Toán (chuyên) năm 2020 – 2021 sở GD&ĐT Gia Lai : + Tìm giá trị của tham số m để hàm số y = (m − 1) x + m2 nghịch biến trên R và đồ thị của nó đi qua điểm M (2; 1). + Cho phương trình x2 − 2(m − 1)x + 2m − 4 = 0 (với m là tham số) có hai nghiệm phân biệt x1; x2. Tìm giá trị của tham số m để x21 + x22 = 3. + Tìm nghiệm nguyên dương của phương trình 2×2 − 8x + 62 = (x − 1)y2 + x2 − 6x + 5.
Đề tuyển sinh lớp 10 chuyên môn Toán (không chuyên) năm 2020 - 2021 sở GDĐT Gia Lai
Đề tuyển sinh lớp 10 chuyên môn Toán (không chuyên) năm 2020 – 2021 sở GD&ĐT Gia Lai gồm có 01 trang với 05 bài toán dạng tự luận, thời gian học sinh làm bài thi là 120 phút. Trích dẫn đề tuyển sinh lớp 10 chuyên môn Toán (không chuyên) năm 2020 – 2021 sở GD&ĐT Gia Lai : + Cho phương trình x2 − 4(m + 1)x + 3m2 + 2m − 5 = 0, với m là tham số. Xác định giá trị của tham số m để phương trình đã cho có hai nghiệm phân biệt x1, x2 sao cho x21 + 4(m + 1)x2 + 3m2 + 2m − 5 = 9. + Quãng đường từ A đến B dài 100 km. Cùng một lúc, một xe máy khởi hành từ A đi đến B và một tô khởi hành từ B đến A. Sau khi hai xe gặp nhau, xe máy đi 1 giờ 30 phút nữa mới đến B. Giả sử vận tốc hai xe không thay đổi trên suốt quãng đường đi. Biết vận tốc của xe máy nhỏ hơn vận tốc của xe tô là 20 km/h. Tính vận tốc của mỗi xe. [ads] + Cho đường tròn tâm O, đường kính AB = 2R. Gọi C là trung điểm của đoạn thẳng OA, qua C kẻ dây cung MN vuông góc với OA. Gọi K là điểm tùy trên cung nhỏ BM (K không trùng với B và M), H là giao điểm của AK và MN. 1. Chứng minh tứ giác BCHK là tứ giác nội tiếp đường tròn. 2. Chứng minh AK.AH = R2. 3. Trên đoạn thẳng KN lấy điểm I sao cho KI = KM. Chứng minh NI = KB.