Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề khảo sát HSG Toán 9 lần 1 năm 2023 - 2024 phòng GDĐT Bình Xuyên - Vĩnh Phúc

THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề khảo sát chất lượng đội tuyển học sinh giỏi môn Toán 9 lần 1 năm học 2023 – 2024 phòng Giáo dục và Đào tạo huyện Bình Xuyên, tỉnh Vĩnh Phúc; đề thi có đáp án và hướng dẫn chấm điểm. Trích dẫn Đề khảo sát HSG Toán 9 lần 1 năm 2023 – 2024 phòng GD&ĐT Bình Xuyên – Vĩnh Phúc : + Cho hình thang ABCD vuông ở đỉnh A và đỉnh B thỏa mãn AD AB BC 2 2. Gọi H chân đường vuông góc kẻ từ A đến BD. a) Chứng minh BHC BCD và tính độ dài CH khi độ dài AB = 4cm. b) Gọi M là trung điểm của HD. Đường thẳng AM và BC cắt nhau tại điểm E. Chứng minh EC EB EM EA. + Cho hình vuông ABCD. Trên cạnh AB, AD lần lượt lấy các điểm M, N thỏa mãn AM DN. Kẻ CH vuông góc MN (H thuộc MN), đường thẳng qua M vuông góc với AB cắt CH tại P. Chứng minh ba điểm DBP thẳng hàng. + Khi kí hợp đồng làm việc thời hạn 5 năm với người lao động được tuyển dụng mới, một công ty đưa ra ba phương án trả lương như sau: Phương án 1: Năm thứ nhất, tiền lương là 120 triệu đồng, kể từ năm thứ hai trở đi, mỗi năm tiền lương tăng thêm 22 triệu so với năm trước. Phương án 2: Quý thứ nhất, tiền lương là 30 triệu đồng, kể từ quý thứ hai trở đi, mỗi quý tăng 1,5 triệu đồng so với quí trước (mỗi quí được tính bừng 3 tháng). Phương án 3: Tháng thứ nhất, tiền lương là 6 triệu đồng, kể từ tháng thứ 2 trở đi, mỗi tháng tăng 300 nghìn đồng so với tháng trước. Nếu là người lao động được tuyển dụng, em sẽ chọn phương án nào để khi kết thúc hợp đồng, tổng số tiền lương thu được là nhiều nhất?

Nguồn: toanmath.com

Đọc Sách

Đề chọn ĐT thi HSG tỉnh lớp 9 môn Toán năm 2022 2023 phòng GD ĐT Nghĩa Đàn Nghệ An
Nội dung Đề chọn ĐT thi HSG tỉnh lớp 9 môn Toán năm 2022 2023 phòng GD ĐT Nghĩa Đàn Nghệ An Bản PDF - Nội dung bài viết Đề chọn ĐT thi HSG tỉnh lớp 9 môn Toán năm 2022-2023 Đề chọn ĐT thi HSG tỉnh lớp 9 môn Toán năm 2022-2023 Sytu xin gửi đến quý thầy cô và các em học sinh lớp 9 đề thi chọn đội tuyển dự thi học sinh giỏi cấp tỉnh môn Toán lớp 9 năm học 2022-2023 phòng Giáo dục và Đào tạo huyện Nghĩa Đàn, tỉnh Nghệ An. Trong đề chọn ĐT thi HSG tỉnh môn Toán lớp 9 năm 2022-2023 phòng GD&ĐT Nghĩa Đàn-Nghệ An, có các câu hỏi sau: Cho hai số tự nhiên a, b thỏa mãn 3a2 + a = 4b2 + b. Chứng minh a-b và 4a+4b+1 đều là số chính phương. Cho tam giác ABC nhọn (AB < AC). Đường tròn tâm I nội tiếp tam giác ABC lần lượt tiếp xúc với BC, CA, AB tại D, E, F. Gọi M là trung điểm của BC. Gọi N là giao điểm của ID và EF. Qua N kẻ đường thẳng song song với BC cắt AB, AC tại Q và P. Qua A kẻ đường thẳng song song với BC cắt EF tại K. a) Chứng minh IP = IQ. b) Chứng minh IAM = FKI. c) Chứng minh S, L, V là thẳng hàng. Cho p là số nguyên tố lớn hơn 5. Chứng minh rằng tồn tại một số có dạng 111...11 chia hết cho p. Đây là những câu hỏi thú vị và quan trọng để phát triển khả năng giải bài toán logic và sáng tạo của các em học sinh. Chúc các em học sinh thành công trong việc giải quyết đề thi và đạt kết quả cao trong kì thi học sinh giỏi toán cấp tỉnh!
Đề HSG lớp 9 môn Toán vòng 3 năm 2022 2023 phòng GD ĐT Nghi Lộc Nghệ An
Nội dung Đề HSG lớp 9 môn Toán vòng 3 năm 2022 2023 phòng GD ĐT Nghi Lộc Nghệ An Bản PDF - Nội dung bài viết Thông báo đề thi HSG lớp 9 môn Toán vòng 3 năm 2022 2023 tại Nghi Lộc, Nghệ An Thông báo đề thi HSG lớp 9 môn Toán vòng 3 năm 2022 2023 tại Nghi Lộc, Nghệ An Sytu xin gửi đến quý thầy cô và các em học sinh lớp 9 đề thi chọn đội tuyển tham gia cuộc thi học sinh giỏi cấp tỉnh môn Toán lớp 9 vòng 3 năm học 2022-2023 tại phòng Giáo dục và Đào tạo huyện Nghi Lộc, tỉnh Nghệ An. Đây là cơ hội để các em thể hiện năng lực và kiến thức của mình trong môn Toán, cũng như trau dồi kỹ năng thi cử và tự tin trước những bài thi quan trọng. Đề thi được thiết kế với nhiều dạng bài tập, từ cơ bản đến nâng cao, đảm bảo phản ánh đầy đủ chương trình học của lớp 9, giúp các em rèn luyện kỹ năng giải quyết vấn đề, tư duy logic và sự linh hoạt trong suy nghĩ. Hy vọng các em sẽ cống hiến và đạt kết quả xuất sắc trong kỳ thi sắp tới. Chúc các em học sinh lớp 9 tại Nghi Lộc, Nghệ An sẽ có những bước chuẩn bị tốt nhất cho kỳ thi HSG môn Toán vòng 3 sắp tới. Hãy cố gắng, nỗ lực và tự tin để tỏa sáng trong cuộc thi và đạt được thành tích cao nhất!
Đề học sinh giỏi cấp tỉnh Toán THCS năm 2022 2023 sở GD ĐT Khánh Hòa
Nội dung Đề học sinh giỏi cấp tỉnh Toán THCS năm 2022 2023 sở GD ĐT Khánh Hòa Bản PDF - Nội dung bài viết GIỚI THIỆU ĐỀ HỌC SINH GIỎI CẤP TỈNH TOÁN THCS NĂM 2022-2023 SỞ GD ĐT KHÁNH HÒA GIỚI THIỆU ĐỀ HỌC SINH GIỎI CẤP TỈNH TOÁN THCS NĂM 2022-2023 SỞ GD ĐT KHÁNH HÒA Sytu xin gửi đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi cấp tỉnh môn Toán THCS năm học 2022 - 2023 sở Giáo dục và Đào tạo tỉnh Khánh Hòa. Kỳ thi sẽ diễn ra vào ngày 07 tháng 12 năm 2022, đây là cơ hội cho các em học sinh thể hiện tài năng và kiến thức của mình trong môn Toán. Hãy chuẩn bị kỹ lưỡng và tự tin tham dự để có cơ hội bước tiếp trên con đường học tập và phát triển cá nhân. Chúc các em học sinh thành công trong kỳ thi sắp tới!
Đề HSG cấp huyện lớp 9 môn Toán năm 2022 2023 phòng GD ĐT Quỳnh Lưu Nghệ An
Nội dung Đề HSG cấp huyện lớp 9 môn Toán năm 2022 2023 phòng GD ĐT Quỳnh Lưu Nghệ An Bản PDF - Nội dung bài viết Đề HSG cấp huyện lớp 9 môn Toán năm 2022-2023 Phòng GD&ĐT Quỳnh Lưu Nghệ An Đề HSG cấp huyện lớp 9 môn Toán năm 2022-2023 Phòng GD&ĐT Quỳnh Lưu Nghệ An Sytu xin gửi đến quý thầy cô và các em học sinh lớp 9 đề thi chọn học sinh giỏi cấp huyện môn Toán năm học 2022-2023 của Phòng Giáo dục và Đào tạo huyện Quỳnh Lưu, tỉnh Nghệ An. Kỳ thi sẽ diễn ra vào ngày 8 tháng 12 năm 2022. Dưới đây là một số câu hỏi trong đề thi: 1. Cho các số thực dương a, b, c thỏa mãn abc = 1. Tìm giá trị lớn nhất của biểu thức Q. 2. Cho tam giác ABC vuông tại A, đường cao AH. Gọi D, K lần lượt là chân đường vuông góc kẻ từ H đến AB, AC. a) Chứng minh: AD.AB = AK.AC b) Chứng minh rằng: Điểm K là điểm tiếp xúc của đường tròn ngoại tiếp tam giác KHC. 3. Cho tam giác ABC vuông cân tại A. Trên hai cạnh AB, AC lấy hai điểm M, N sao cho AM = CN. Xác định vị trí các điểm M, N trên các cạnh AB, AC sao cho đoạn MN đạt giá trị nhỏ nhất. Đây là một số câu hỏi thú vị và thách thức dành cho các em học sinh lớp 9. Chúc các em ôn tập tốt và thành công trong kỳ thi sắp tới.