Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi học sinh giỏi tỉnh lớp 12 môn Toán THPT năm 2019 2020 sở GD ĐT Đồng Nai

Nội dung Đề thi học sinh giỏi tỉnh lớp 12 môn Toán THPT năm 2019 2020 sở GD ĐT Đồng Nai Bản PDF Ngày … tháng 01 năm 2020, sở Giáo dục và Đào tạo tỉnh Đồng Nai tổ chức kỳ thi chọn học sinh giỏi THPT cấp tỉnh môn Toán lớp 12 năm học 2019 – 2020. Đề thi học sinh giỏi tỉnh Toán lớp 12 THPT năm 2019 – 2020 sở GD&ĐT Đồng Nai gồm có 01 trang với 06 bài toán tự luận, thời gian làm bài 180 phút (không kể thời gian giám thị coi thi phát đề), đề thi có lời giải chi tiết. Trích dẫn đề thi học sinh giỏi tỉnh Toán lớp 12 THPT năm 2019 – 2020 sở GD&ĐT Đồng Nai : + Cho hàm số y = 1 + (m^2 – 4)x + (4m – 1)x^2 – x^3, với m là tham số. a) Hỏi có bao nhiêu giá trị nguyên của m để hàm số đã cho nghịch biến trên R. b) Tìm các số thực m để hàm số đã cho đạt cực đại tại x = 1. c) Tìm các số thực m để giá trị nhỏ nhất của hàm số đã cho trên [-2;-1] bằng 9. + Một trang trại xây một bể nước hình hộp chữ nhật không nắp có thể tích bằng 18,432 m3 (tính cả thành và đáy bể), biết đáy bể là hình chữ nhật có chiều dài gấp đôi chiều rộng. Chi phí xây bể được tính theo tổng diện tích của thành (mặt bên ngoài) và đáy bể với giá 800 nghìn đồng / m2. Tìm các kích thước của bể để chi phí xây bể là nhỏ nhất và tính gần đúng chi phí đó. [ads] + Cho hình chóp S.ABCD có đáy là hình vuông cạnh a và SA vuông góc mặt phẳng đáy, SA = a. Biết M, N là hai điểm thay đổi lần lượt thuộc hai cạnh AB và AD sao cho AM + AN = a. 1) Chứng minh thể tích S.AMCN có giá trị không đổi. 2) Tính theo a khoảng cách từ C đến (SMN). Chứng minh mặt phẳng (SMN) luôn tiếp xúc với một mặt cầu cố định. + Một tổ gồm 8 học sinh là An, Bình, Châu, Dũng, Em, Fin, Giang, Hạnh sẽ cùng đi trên một chuyến bay để dự đợt học tập, tham quan và trải nghiệm; đại lý dành cho tổ 8 vé máy bay có số ghế là 18A, 18B, 18C, 18D, 18E, 18F, 18G, 18H. Mỗi học sinh chọn ngẫu nhiên một vé. Tính xác suất để có đúng 4 học sinh trong tổ mà mỗi bạn chọn được một vé có chữ của số ghế trùng với chữ đầu của tên mình.

Nguồn: sytu.vn

Đọc Sách

Đề thi chọn HSG tỉnh lớp 12 môn Toán năm 2017 2018 sở GD ĐT Quảng Bình
Nội dung Đề thi chọn HSG tỉnh lớp 12 môn Toán năm 2017 2018 sở GD ĐT Quảng Bình Bản PDF Ngày 22 tháng 03 năm 2018, sở Giáo dục và Đào tạo tỉnh Quảng Bình tổ chức kỳ thi chọn học sinh giỏi tỉnh môn Toán lớp 12 THPT năm học 2017 – 2018. Đề thi chọn HSG tỉnh Toán lớp 12 năm 2017 – 2018 sở GD&ĐT Quảng Bình gồm 01 trang với 05 bài toán, thời gian làm bài 180 phút, đề thi có hướng dẫn chấm. Trích dẫn đề thi chọn HSG tỉnh Toán lớp 12 năm 2017 – 2018 sở GD&ĐT Quảng Bình : + Viết phương trình tiếp tuyến với đồ thị (C): y = x/(x – 1), biết rằng khoảng cách từ tâm đối xứng của đồ thị (C) đến tiếp tuyến là lớn nhất. [ads] + Cho hình chóp S.ABCD có đáy ABCD là một hình bình hành. Gọi K là trung điểm của SC. Giả sử (P) là mặt phẳng đi qua hai điểm A, K và luôn cắt các cạnh SB, SD lần lượt tại M, N (M, N không trùng S). a. Chứng minh rằng: SB/SM + SD/SN = 3. b. Gọi V1 và V theo thứ tự là thể tích của khối chóp S.AMKN và S.ABCD. Xác định vị trí của mặt phẳng (P) để tỷ số V1/ V đạt giá trị lớn nhất. + Cho a, b, c là các số thực không âm, thỏa mãn a + b + c = 3. Chứng minh rằng: a^2/(b^2 + 1) + b^2/(c^2 + 1) + c^2/(a^2 + 1) ≥ 3/2.
Đề thi chọn HSG tỉnh lớp 12 môn Toán THPT năm 2017 2018 sở GD và ĐT Hà Tĩnh
Nội dung Đề thi chọn HSG tỉnh lớp 12 môn Toán THPT năm 2017 2018 sở GD và ĐT Hà Tĩnh Bản PDF Đề thi chọn HSG tỉnh Toán lớp 12 THPT năm 2017 – 2018 sở GD và ĐT Hà Tĩnh gồm 1 trang với 5 bài toán tự luận, thời gian làm bài 180 phút, đề nhằm tuyển chọn các em học sinh giỏi môn Toán lớp 12 tại các trường THPT và cở sở GD – ĐT trên toàn tỉnh Hà Tĩnh, đề thi HSG Toán lớp 12 có lời giải chi tiết . Trích dẫn đề thi chọn HSG tỉnh Toán lớp 12 : + Một công ty sữa muốn thiết kế hộp đựng sữa với thể tích hộp là 1dm3, hộp được thiết kế bởi một trong hai mẫu sau với cùng một loại vật liệu: mẫu 1 là hình hộp chữ nhật; mẫu 2 là hình trụ. Biết rằng chi phí làm mặt hình tròn cao hơn 1,2 lần chi phí làm mặt hình chữ nhật với cùng diện tích. Hỏi thiết kế hộp theo mẫu nào sẽ tiết kiệm chi phí hơn? (xem diện tích các phần nối giữa các mặt là không đáng kể). + Cho hàm sốy = (2x + 3)/(x + 2) có đồ thị (C) và đường thẳng d: y = -2x + m. Chứng minh rằng d cắt (C) tại hai điểm A, B phân biệt với mọi số thực m. Gọi k1, k2 lần lượt là hệ số góc của tiếp tuyến của (C) tại A và B. Tìm m để k1 + k2 = 4. [ads] + Cho hình chóp S.ABCD có đáy là hình thoi, AB = AC = a; tam giác SBD đều và nằm trong mặt phẳng vuông góc với mặt phẳng (ABCD). Gọi M là trung điểm của cạnh SC, mặt phẳng (ABM) chia khối chóp S.ABCD thành hai khối đa diện. a. Tính thể tích của khối đa diện không chứa điểm S. b. Tính khoảng cách giữa hai đường thẳng SA và BM.
Đề thi HSG lớp 12 môn Toán năm học 2017 2018 sở GD và ĐT Quảng Ninh (Bảng A)
Nội dung Đề thi HSG lớp 12 môn Toán năm học 2017 2018 sở GD và ĐT Quảng Ninh (Bảng A) Bản PDF Đề thi HSG Toán lớp 12 năm học 2017 – 2018 sở GD và ĐT Quảng Ninh (Bảng A) gồm 1 trang với 6 bài toán tự luận, thời gian làm bài 180 phút, đề thi học sinh giỏi Toán lớp 12 có lời giải chi tiết .
Đề thi chọn học sinh giỏi lớp 12 môn Toán năm học 2017 2018 sở GD và ĐT Nam Định
Nội dung Đề thi chọn học sinh giỏi lớp 12 môn Toán năm học 2017 2018 sở GD và ĐT Nam Định Bản PDF Đề thi chọn học sinh giỏi Toán lớp 12 năm học 2017 – 2018 sở GD và ĐT Nam Định gồm 2 phần: 40 câu hỏi trắc nghiệm khách quan, thời gian làm bài 60 phút, 5 bài toán tự luận, thời gian làm bài 75 phút, đề thi nhằm chọn lọc các em HSG môn Toán lớp 12 THPT tại các trường THPT trên toàn tỉnh Nam Định. Trích dẫn đề thi chọn học sinh giỏi Toán lớp 12 năm học 2017 – 2018 : + Trong không gian với hệ tọa độ Oxyz, cho A(a,0,0), B(0,b,0), C(0,0,c) với a, b, c là các số thực thay đổi, khác 0 và thỏa mãn a + b + c = 6. Gọi tâm mặt cầu ngoại tiếp tứ diện OABC là I. Giá trị nhỏ nhất của OI bằng? [ads] + Cho X là tập hợp các số tự nhiên có 4 chữ số khác nhau được lập từ các số 1, 2, 3, 4, 5, 6. Lấy ngẫu nhiên một số thuộc X. Xác suất để lấy được một số chia hết cho 45 là? +  Có bao nhiêu giá trị m nguyên dương nhỏ hơn 10 để đồ thị hàm số y = x^3 – mx + m – 1 có hai điểm cực trj nằm về 2 phía của trục Ox?