Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi học kỳ 1 Toán 10 năm 2019 - 2020 trường Thanh Miện - Hải Dương

giới thiệu đến quý thầy, cô giáo và các em học sinh khối 10 đề thi học kỳ 1 Toán 10 năm học 2019 – 2020 trường THPT Thanh Miện – Hải Dương, kỳ thi nhằm giúp nhà trường nắm rõ chất lượng dạy và học môn Toán 10 của giáo viên và học sinh trong học kỳ vừa qua. Đề thi học kỳ 1 Toán 10 năm 2019 – 2020 trường Thanh Miện – Hải Dương gồm 06 trang với 50 câu hỏi và bài toán trắc nghiệm, thời gian làm bài 90 phút, đề thi có đáp án mã đề 001, 002, 003, 004, 005, 006, 007, 008. Trích dẫn đề thi học kỳ 1 Toán 10 năm 2019 – 2020 trường Thanh Miện – Hải Dương : + Cho hàm số y = x^3 + x, mệnh đề nào sau đây đúng? A. Hàm số đã cho là hàm số lẻ. B. Hàm số đã cho là hàm số chẵn. C. Hàm số đã cho không là hàm số chẵn, không là hàm số lẻ. D. Hàm số đã cho vừa là hàm số chẵn, vừa là hàm số lẻ. + Cho hai điểm B, C phân biệt. Tập hợp những điểm M thỏa mãn CM.CB = CM^2 là: A. đường tròn đường kính BC. B. đường tròn tâm B bán kính BC. C. đường tròn tâm C bán kính BC. D. đường thẳng vuông góc với BC tại B. [ads] + Cho tam giác đều ABC cạnh a. Biết rằng tập hợp các điểm M thỏa mãn đẳng thức |2MA + 3MB + 4MC| = |MB – MA| là đường tròn cố định có bán kính R. Tính bán kính R theo a. + Cho hệ phương trình x + y = 2 và x^2.y + y^2.x = 4m^2 – 2m. Tìm tập hợp tất cả các giá trị của m để hệ phương trình trên có nghiệm. + Khẳng định nào sau đây là sai? A. ka và a cùng hướng khi k > 0. B. ka và a cùng hướng khi k < 0. C. Hai vectơ a và b khác 0 cùng phương khi có một số k để a = kb. D. 1.a = a.

Nguồn: toanmath.com

Đọc Sách

Đề thi học kì 1 (HK1) lớp 10 môn Toán năm 2020 2021 trường THPT Nguyễn Công Trứ TP HCM
Nội dung Đề thi học kì 1 (HK1) lớp 10 môn Toán năm 2020 2021 trường THPT Nguyễn Công Trứ TP HCM Bản PDF Sáng thứ Bảy ngày 26 tháng 12 năm 2020, trường THPT Nguyễn Công Trứ, quận Gò Vấp, thành phố Hồ Chí Minh tổ chức kỳ thi kiểm tra chất lượng môn Toán lớp 10 giai đoạn cuối học kỳ 1 năm học 2020 – 2021. Đề thi HK1 Toán lớp 10 năm 2020 – 2021 trường THPT Nguyễn Công Trứ – TP HCM gồm 01 trang, đề được biên soạn theo dạng tự luận với 08 bài toán, thời gian làm bài 90 phút, đề thi có lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn đề thi HK1 Toán lớp 10 năm 2020 – 2021 trường THPT Nguyễn Công Trứ – TP HCM : + Để lập đường dây cao thế từ vị trí A đến vị trí B, ta phải tránh một ngọn núi nên ta phải nối thẳng đường dây từ vị trí A đến vị trí C dài 10 km rồi nối từ vị trí C thẳng đến vị trí B dài 8km. Biết góc tạo bởi hai đoạn dây AC và CB là 120 độ. Hỏi so với việc nối thẳng từ A đến B người ta tốn thêm bao nhiêu km dây? + Trong mặt phằng tọa độ Oxy, cho ba điểm A(-1;4), B(2;5), C(3;-8). a) Chứng minh tam giác ABC vuông tại A. Suy ra tâm đường tròn ngoại tiếp tam giác ABC. b) Tính diện tích tam giác ABC. c) Tìm điểm D thuộc Oy có tung độ nhỏ hơn 3 sao cho tam giác ABD cân tại A. + Tìm m để phương trình (x + 2)(x2 + 2x + m) = 0 có ba nghiệm âm phân biệt.
Đề thi học kì 1 (HK1) lớp 10 môn Toán năm 2020 2021 trường THPT Phan Ngọc Hiển Cà Mau
Nội dung Đề thi học kì 1 (HK1) lớp 10 môn Toán năm 2020 2021 trường THPT Phan Ngọc Hiển Cà Mau Bản PDF Đề thi HK1 Toán lớp 10 năm 2020 – 2021 trường THPT Phan Ngọc Hiển – Cà Mau mã đề 134 gồm có 02 trang, đề được biên soạn theo dạng trắc nghiệm kết hợp với tự luận, phần trắc nghiệm gồm 20 câu (4,0 điểm), phần tự luận gồm 05 câu (6,0 điểm), thời gian làm bài 90 phút, kỳ thi được tổ chức vào thứ Năm ngày 24 tháng 12 năm 2020, đề thi có đáp án mã đề 134, 215, 315, 418. Trích dẫn đề thi HK1 Toán lớp 10 năm 2020 – 2021 trường THPT Phan Ngọc Hiển – Cà Mau : + Trong các câu sau, câu nào không phải là mệnh đề? A. Bạn có thường đi du lịch vào kì nghỉ hè không? B. Hà Nội là thủ đô của Việt Nam. C. 2 là số nguyên tố chẵn. D. Một năm có 12 tháng. + Trong mặt phẳng Oxy, cho tam giác ABC với A(2;4); B(-3;2); C(5;1). a. Tìm toạ độ trọng tâm G của tam giác ABC. b. Tìm tọa độ điểm D sao cho ABCD là hình bình hành. + Cho tam giác ABC. Gọi M là một điểm trên cạnh BC sao cho MB = 4MC. Khi đó? File WORD (dành cho quý thầy, cô):
Đề thi học kì 1 (HK1) lớp 10 môn Toán (chuyên Toán) năm 2020 2021 trường chuyên Nguyễn Huệ Hà Nội
Nội dung Đề thi học kì 1 (HK1) lớp 10 môn Toán (chuyên Toán) năm 2020 2021 trường chuyên Nguyễn Huệ Hà Nội Bản PDF Đề thi HK1 Toán lớp 10 (chuyên Toán) năm 2020 – 2021 trường chuyên Nguyễn Huệ – Hà Nội gồm 01 trang với 05 bài toán dạng tự luận, thời gian làm bài 90 phút. Trích dẫn đề thi HK1 Toán lớp 10 (chuyên Toán) năm 2020 – 2021 trường chuyên Nguyễn Huệ – Hà Nội : + Cho tam giác ABC thỏa mãn: cos2A + cos2B + cos2C + 1 = 0. Chứng minh rằng tam giác ABC là tam giác vuông. + Cho p là một số nguyên tố lẻ. Chứng minh rằng A = 7^p – 5^p – 2 luôn là bội số của 6p. + Cho O, I lần lượt là tâm đường tròn ngoại tiếp và nội tiếp của tam giác ABC. Đường thẳng vuông góc với AI tại A cắt BI, CI tại K, M. Gọi B’, C’ lần lượt là giao điểm của BI với AC và CI với AB. Đường thẳng B’C’ cắt đường tròn (O) tại N, E. 1. Chứng minh rằng KM, NE, BC đồng quy. 2. Chứng minh rằng M, N, E, K đồng viên.
Đề thi học kì 1 (HK1) lớp 10 môn Toán chuyên năm 2020 2021 trường chuyên Lê Hồng Phong Nam Định
Nội dung Đề thi học kì 1 (HK1) lớp 10 môn Toán chuyên năm 2020 2021 trường chuyên Lê Hồng Phong Nam Định Bản PDF Đề thi HK1 Toán lớp 10 chuyên năm 2020 – 2021 trường chuyên Lê Hồng Phong – Nam Định gồm 01 trang với 05 bài toán dạng tự luận, thời gian làm bài 150 phút (không kể thời gian phát đề). Trích dẫn đề thi HK1 Toán lớp 10 chuyên năm 2020 – 2021 trường chuyên Lê Hồng Phong – Nam Định : + Cho tam giác nhọn, không cân ABC nội tiếp đường tròn (O), có các đường cao AH, BE, CF. Tiếp tuyến tại B và C của (O) cắt nhau tại T. Gọi D là giao điểm của AT và BC, S là giao điểm của EF và BC, G là hình chiếu vuông góc của T trên AO, J là giao điểm thứ hai của TH và đường tròn ngoại tiếp tam giác OBC. Chứng minh: a) Các điểm S, J, M, T cùng thuộc một đường tròn, với M là trung điểm của BC. b) Các đường thẳng SO, TH, DG đồng quy tại một điểm. + Tìm số dư khi chia 11^12 + 12^13 + 13^14 cho 7. + Cho p là số nguyên tố và a, b là các số nguyên dương lẻ thỏa mãn a – b chia hết cho p – 1 và a + b chia hết cho p. Chứng minh a^b + b^a chia hết cho p.