Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề khảo sát chất lượng lớp 9 môn Toán năm 2022 2023 sở GD ĐT Thanh Hóa

Nội dung Đề khảo sát chất lượng lớp 9 môn Toán năm 2022 2023 sở GD ĐT Thanh Hóa Bản PDF - Nội dung bài viết Đề khảo sát chất lượng lớp 9 môn Toán năm 2022-2023 sở GD ĐT Thanh Hóa Đề khảo sát chất lượng lớp 9 môn Toán năm 2022-2023 sở GD ĐT Thanh Hóa Chào đón quý thầy cô và các em học sinh lớp 9, Sytu xin giới thiệu đến bạn Đề khảo sát chất lượng học sinh môn Toán lớp 9 năm học 2022-2023 của sở Giáo dục và Đào tạo tỉnh Thanh Hóa. Kỳ thi sẽ diễn ra vào sáng thứ Tư ngày 26 tháng 04 năm 2023. Đề khảo sát chất lượng Toán lớp 9 năm 2022-2023 của sở GD&ĐT Thanh Hóa bao gồm các nội dung sau: Trong mặt phẳng tọa độ Oxy, có đường thẳng d: y = (a - 1)x + b - 2 (trong đó a và b là tham số). Đường thẳng d được biết là song song với đường thẳng d': y = 3x + 8 và đi qua điểm A(2,3). Yêu cầu tính T = a2 + 2b2. Cho phương trình x2 - 2(m - 1)x + 2m - 5 = 0 (với m là tham số). Hãy tìm các giá trị của m để phương trình có hai nghiệm x1, x2 thỏa mãn điều kiện: (x12 - 2mx1 + 2m - 1)(x22 - 2mx2 + 2m - 1) < 0. Cho tam giác ABC không có góc tù (AB < AC) và nội tiếp đường tròn (O) (B và C cố định và A di động trên cung lớn BC). Các tiếp tuyến tại B và C cắt nhau tại M. Từ M kẻ đường thẳng song song với AB, đường thẳng này cắt (O) tại D và E (D thuộc cung nhỏ BC), cắt BC tại F, cắt AC tại I. Chứng minh tứ giác MBOC là tứ giác nội tiếp. Chứng minh FI.FM = FD.FE. Tìm vị trí của đỉnh A trên cung lớn BC sao cho tam giác IBC có diện tích lớn nhất. Hi vọng rằng Đề khảo sát chất lượng Toán lớp 9 năm 2022-2023 sẽ giúp các em học sinh ôn tập và chuẩn bị tốt nhất cho kỳ thi sắp tới. Chúc các em thành công!

Nguồn: sytu.vn

Đọc Sách

Đề khảo sát Toán 9 năm 2020 - 2021 trường THCS Phan Chu Trinh - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề khảo sát chất lượng môn Toán lớp 9 năm học 2020 – 2021 trường THCS Phan Chu Trinh, quận Ba Đình, thành phố Hà Nội; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm; kỳ thi được diễn ra vào thứ Sáu ngày 04 tháng 06 năm 2021. Trích dẫn đề khảo sát Toán 9 năm 2020 – 2021 trường THCS Phan Chu Trinh – Hà Nội : + Một hộp sữa hình trụ có thể tích bằng 3 83 cm. Hãy so sánh thể tích hộp sữa hình trụ này với thể tích hình cầu có đường kính 8cm. + Cho 2 P y x và đường thẳng d y m x m 2 2 (m là tham số). a) Tìm m để đường thẳng (d) cắt (P) tại hai điểm phân biệt A và B. b) Gọi hoành độ của A và B lần lượt là 1 2 x x. Tìm m để 2 1 2 x m x 2 12. + Cho đường tròn (O;R) và dây cung BC R 3 cố định. Một điểm A chuyển động trên cung lớn BC sao cho tam giác ABC có ba góc nhọn, AM là đường kính của (O). Kẻ các đường cao AD, BE, CF cắt nhau tại H. a) Chứng minh các tứ giác BCEF, AEHF nội tiếp. b) Chứng minh tứ giác BHCM là hình bình hành và tính độ dài của đoạn AH theo R. c) Kẻ DP vuông góc với BE tại P, đường thẳng qua P và vuông góc với đường kính AM cắt CF tại Q. Chứng minh rằng tứ giác DPHQ nội tiếp và PQ < HD.
Đề khảo sát môn Toán 9 năm 2020 - 2021 trường THCS Ngọc Thụy - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề khảo sát chất lượng môn Toán lớp 9 năm học 2020 – 2021 trường THCS Ngọc Thụy, quận Long Biên, thành phố Hà Nội; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm; kỳ thi được diễn ra vào thứ Sáu ngày 04 tháng 06 năm 2021. Trích dẫn đề khảo sát môn Toán 9 năm 2020 – 2021 trường THCS Ngọc Thụy – Hà Nội : + Một chiếc thùng bằng tôn dạng hình trụ. Có bán kính đáy là 10cm, chiều cao là 32cm. a) Tính diện tích tôn để làm chiếc thùng (không kể diện tích các chỗ ghép và thùng không có nắp). b) Hỏi nếu đổ 10 lít nước vào thùng thì nước có bị tràn ra ngoài hay không? + Trong mặt phẳng tọa độ Oxy cho Parabol (P): 2 y x và đường thẳng d y x 2. Xác định tọa độ giao điểm của (d) và (P). + Cho đường tròn (O) và điểm A nằm ngoài đường tròn (O). Từ A kẻ hai tiếp tuyến AB, AC với đường tròn (O) (B và C là các tiếp điểm). 1. Chứng minh tứ giác ABOC nội tiếp đường tròn. 2. Đường thẳng CO cắt đường tròn (O) tại điểm thứ hai là D; đường thẳng AD cắt đường tròn (O) tại điểm thứ hai là E; đường thẳng BE cắt AO tại F; H là giao điểm của AO và BC. Chứng minh: AE.AD = AH.AO. 3. Chứng minh: 2 2 2 1.
Đề khảo sát chất lượng Toán 9 năm 2020 - 2021 trường THCS Trưng Vương - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề khảo sát chất lượng Toán 9 năm học 2020 – 2021 trường THCS Trưng Vương, quận Hoàn Kiếm, thành phố Hà Nội; đề được biên soạn theo hình thức đề thi tự luận 100% với 05 bài toán, thời gian làm bài 120 phút.
Đề khảo sát chất lượng Toán 9 năm 2020 - 2021 trường THCS Tân Mai - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề khảo sát chất lượng Toán 9 năm học 2020 – 2021 trường THCS Tân Mai – Hà Nội; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm; kỳ thi được diễn ra vào thứ Bảy ngày 22 tháng 05 năm 2021. Trích dẫn đề khảo sát chất lượng Toán 9 năm 2020 – 2021 trường THCS Tân Mai – Hà Nội : + Chiếc mũ sinh nhật là một hình nón được làm từ bìa cứng có đường kính đáy là 40cm, độ dài đường sinh là 30cm. Hãy tính diện tích phần bìa cứng để làm một chiếc mũ nói trên (bỏ qua mép gấp và cho π ≈ 3,14). + Trong mặt phẳng tọa độ Oxy cho parabol (P): 2 y x và đường thẳng (d): y mx m 1. a) Tìm tọa độ giao điểm của đường thẳng (d) và parabol (P) khi m = 4. b) Tìm giá trị của m để đường thẳng (d) và parabol (P) cắt nhau tại hai điểm phân biệt có hoành độ 1 2 x x là độ dài hai cạnh góc vuông của một tam giác vuông có độ dài đường cao ứng với cạnh huyền bằng 1 5. + Cho ∆ABC nhọn (AB > AC) nội tiếp đường tròn (O), kẻ đường cao AH của ∆ABC và đường kính AD của (O). Gọi M là hình chiếu vuông góc của B trên đường thẳng AD. 1) Chứng minh bốn điểm A, H, M, B cùng thuộc một đường tròn. 2) Tiếp tuyến tại D của đường tròn (O) cắt hai tia AB và AC lần lượt tại E và F. Chứng minh AB.AE = AC.AF. 3) Gọi I là trung điểm của BC, đường thẳng qua I song song với với CD cắt BM tại K, tia DK cắt đường tròn (O) tại điểm thứ hai là S. Hai đường thẳng BC và EF cắt nhau tại Q. Chứng minh tứ giác SBKI nội tiếp và SQ là tiếp tuyến của (O).