Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề học sinh giỏi tỉnh Toán 12 chuyên năm 2021 - 2022 sở GDĐT Đồng Nai

giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi chọn học sinh giỏi cấp tỉnh môn Toán 12 chuyên năm học 2021 – 2022 sở Giáo dục và Đào tạo tỉnh Đồng Nai; kỳ thi được diễn ra vào ngày 18 tháng 02 năm 2022. Trích dẫn đề học sinh giỏi tỉnh Toán 12 chuyên năm 2021 – 2022 sở GD&ĐT Đồng Nai : + Tam giác ABC nhọn không cân có M là trung điểm BC và P là điểm di chuyển trên đoạn thẳng AM. Đường tròn ngoại tiếp tam giác APB cắt đường thẳng AC ở E; đường tròn ngoại tiếp tam giác APC cắt đường thẳng AB ở F. Lấy T khác A trên AM sao cho A E F T đồng viên 1) Chứng minh tâm I của đường tròn ngoại tiếp tam giác AEF thuộc một đường thẳng cố định khi P di động trên AM 2) Lấy K đối xứng A qua IM, giả sử KT cắt AB ở X, KE cắt AM ở Y và EF cắt BC cắt ở G. Chứng minh XY qua G. + Cho số nguyên dương n và một dãy tăng các số nguyên dương sao cho với mọi chia hết cho aj – ai. Chứng minh rằng là một dãy không tăng. + Cho đa thức hệ số thực f(x) có 4 nghiệm dương phân biệt nhỏ hơn 8. Phương trình f(x5 – 5x + 4) = 0 có bao nhiêu nghiệm thực? Tại sao?

Nguồn: toanmath.com

Đọc Sách

Đề thi chọn đội tuyển dự thi HSG Quốc gia THPT 2018 môn Toán sở GD và ĐT Bắc Ninh
Đề thi chọn đội tuyển dự thi HSG Quốc gia THPT 2018 môn Toán sở GD và ĐT Bắc Ninh gồm 5 bài toán tự luận, thời gian làm bài 180 phút, đề có lời giải chi tiết và thang điểm. Trích dẫn đề thi : + Cho tam giác ABC nội tiếp đường tròn (O), có trực tâm H. Gọi M, N, P là trung điểm của BC, CA, AB. Đường tròn đường kính AH và đường tròn (O) cắt nhau tại T ≠ A. AT cắt BC tại Q. NP cắt tiếp tuyến tại A của đường tròn (O) tại R. a) Chứng minh rằng QR vuông góc OH b) Đường thẳng đối xứng với HM qua phân giác trong góc BHC cắt đoạn thẳng BC tại I. Gọi K là hình chiếu của A trên HI. Chứng minh rằng đường tròn ngoại tiếp tam giác MIK tiếp xúc với đường tròn (O). [ads] + Cho S là tập gồm 2017 số nguyên tố phân biệt và M là tập gồm 2018 số tự nhiên phân biệt sao cho mỗi số trong M đều không là số chính phương và chỉ có ước nguyên tố thuộc S. Chứng minh rằng có thể chọn ra trong M một số số có tích là một số chính phương. + Có 32 học sinh tham gia 33 câu lạc bộ, mỗi học sinh có thể tham gia nhiều câu lạc bộ và mỗi câu lạc bộ có đúng 3 học sinh tham gia. Biết rằng không có 2 câu lạc bộ nào có 3 học sinh giống nhau. Chứng minh rằng có 2 câu lạc bộ chung nhau đúng 1 học sinh.
Đề thi chọn đội dự tuyển thi HSG Quốc gia THPT 2018 môn Toán sở GD và ĐT Đồng Nai
Đề thi chọn đội dự tuyển thi HSG Quốc gia THPT 2018 môn Toán sở GD và ĐT Đồng Nai gồm 5 bài toán tự luận, thời gian làm bài 180 phút.
Đề thi chọn HSG thành phố Toán 12 năm học 2017 - 2018 sở GD và ĐT Hải Phòng (Không chuyên)
Đề thi chọn HSG thành phố Toán 12 năm học 2017 – 2018 sở GD và ĐT Hải Phòng (Bảng không chuyên) gồm 7 bài toán tự luận, thời gian làm bài 180 phút. Trích dẫn đề thi : + Cho hình lăng trụ đứng ABC.A’B’C’ có đáy là tam giác ABC vuông tại C. Gọi M, N lần lượt là trung điểm của A’C’ và BC. Biết AC = a, BC = a√3, số đo của góc tạo bởi hai mặt phẳng (ABC’) và (ABC) bằng 60 độ. a) Tính thể tích của khối lăng trụ ABC.A’B’C’ b) Tính diện tích thiết diện của lăng trụ ABC.A’B’C’ cắt bởi mặt phẳng (AMN) [ads] + Người ta dùng 18 cuốn sách bao gồm 7 cuốn sách Toán, 6 cuốn sách Vật lý và 5 cuốn sách Hoá học (các cuốn sách cùng loại giống nhau hoàn toàn) để làm phần thưởng cho 9 học sinh (trong đó có hai học sinh A và B), mỗi học sinh nhận được hai cuốn sách khác thể loại (không tính thứ tự các cuốn sách). Tính xác suất để hai học sinh A và B nhận được phần thưởng giống nhau. + Trong mặt phẳng với hệ toạ độ Oxy, cho hình vuông ABCD. Gọi M, N lần lượt là trung điểm của AB, BC; điểm E(22/5, 11/5) là giao điểm của hai đường thẳng CM và DN. Gọi H là trung điểm của DE, đường thẳng AH cắt cạnh CD tại P(7/2; 1). Tìm toạ độ điểm A, biết hoành độ điểm A nhỏ hơn 4.
Đề thi chọn HSG lớp 12 cấp trường năm học 2017 - 2018 môn Toán trường Trần Hưng Đạo - Vĩnh Phúc
Đề thi chọn HSG lớp 12 cấp trường năm học 2017 – 2018 môn Toán trường THPT Trần Hưng Đạo – Vĩnh Phúc gồm 1 trang với 6 bài toán tự luận, thời gian làm bài 180 phút, đề thi có lời giải chi tiết và thang điểm. Trích dẫn đề thi : + Trong mặt phẳng với hệ trục tọa độ Oxy, cho hình chữ nhật ABCD có A(5, -7), điểm C thuộc đường thẳng có phương trình (d1): x – y + 4 = 0. Đường thẳng đi qua D và trung điểm của đoạn AB có phương trình (d2): 3x – 4y – 23 = 0. Tìm tọa độ của B và C, biết điểm B có hoành độ dương. [ads] + Cho hình chóp S.ABCD có đáy ABCD là hình thoi cạnh a góc BAD = 60 độ, hình chiếu vuông góc của S trên mặt phẳng (ABCD) trùng với điểm G là trọng tâm tam giác BCD. Góc giữa SA và mặt phẳng (ABCD) bằng 60 độ. Tính thể tích khối chóp S.ABCD và khoảng cách giữa hai đường thẳng DC và SA theo a. + Cho A là tập hợp các số tự nhiên có 6 chữ số đôi một khác nhau lập được từ các chữ số 0, 2, 3, 5, 6, 8. Lấy ngẫu nhiên một số thuộc tập A. Tính xác suất để số lấy được có chữ số 0 và chữ số 5 không đứng cạnh nhau.