Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề cuối kỳ 1 Toán 10 năm 2023 - 2024 trường THPT Buôn Đôn - Đắk Lắk

giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 10 đề kiểm tra cuối học kỳ 1 môn Toán 10 năm học 2023 – 2024 trường THPT Buôn Đôn, tỉnh Đắk Lắk; đề thi có đáp án mã đề 521-C 027-A 521-D 030-B. Trích dẫn Đề cuối kỳ 1 Toán 10 năm 2023 – 2024 trường THPT Buôn Đôn – Đắk Lắk : + Một cửa hàng buôn quần áo trẻ em nhập một bộ với giá là 45 (nghìn đồng). Cửa hàng ước tính rằng nếu bộ quần áo được bán với giá x (nghìn đồng) thì mỗi tháng khách hàng sẽ mua (155 − x) bộ. Hỏi cửa hàng bán một bộ quần áo giá bao nhiêu thì thu được nhiều lãi nhất? + Một giá đỡ có dạng tam giác ABC vuông cân tại đỉnh A được gắn vào tường như hình bên. Người ta treo vào vị trí C một vật nặng 10N. Cường độ lực tác động vào tường tại điểm A và B là? + Muốn đo chiều cao của tháp chàm Por Klong Garai ở Ninh Thuận (tham khảo hình vẽ) người ta lấy hai điểm A và B trên mặt đất có khoảng cách AB = 12 m cùng thẳng hàng với chân C của tháp để đặt hai giác kế. Chân của giác kế có chiều cao h = 1,3m. Gọi D là đỉnh tháp và hai điểm A1 B1 cùng thẳng hàng với C1 thuộc chiều cao CD của tháp. Người ta đo được góc 1 DAC 49 và 1 DB C 35. Tính chiều cao CD của tháp.

Nguồn: toanmath.com

Đọc Sách

Đề thi HK1 Toán 10 năm 2019 - 2020 trường THPT Thủ Thiêm - TP HCM
Nhằm giúp các em học sinh lớp 10 có tư liệu ôn tập để chuẩn bị cho kỳ thi học kì 1 môn Toán 10, sưu tầm và chia sẻ đến các em nội dung đề thi + đáp án + lời giải chi tiết đề thi HK1 Toán 10 năm học 2019 – 2020 trường THPT Thủ Thiêm, thành phố Hồ Chí Minh. Trích dẫn đề thi HK1 Toán 10 năm 2019 – 2020 trường THPT Thủ Thiêm – TP HCM : + Trong mặt phẳng (Oxy), cho ba điểm A(2;-1); B(4;4); C(-2;-4). a) Chứng minh A, B, C tạo thành tam giác. Tính chu vi tam giác ABC. b) Tìm D sao cho tứ giác AODC là hình bình hành. Tìm tọa độ tâm I của hình bình hành. c) Tìm tọa độ trực tâm H của tam giác ABC. + Khảo sát sự biến thiên và vẽ đồ thị hàm số y = 2x^2 – 4x – 3. + Tìm hàm số y = ax^2 + bx + 8 biết đồ thị của hàm số là một parabol có đỉnh S(-3;17).
Đề thi HK1 Toán 10 năm 2019 - 2020 trường THPT An Dương Vương - TP HCM
Nhằm giúp các em học sinh lớp 10 có tư liệu ôn tập để chuẩn bị cho kỳ thi học kì 1 môn Toán 10, sưu tầm và chia sẻ đến các em nội dung đề thi + đáp án + lời giải chi tiết đề thi HK1 Toán 10 năm học 2019 – 2020 trường THPT An Dương Vương, thành phố Hồ Chí Minh. Trích dẫn đề thi HK1 Toán 10 năm 2019 – 2020 trường THPT An Dương Vương – TP HCM : + Cho tam giác ABC có AB = 5, AC = 6, góc A = 60 độ. Tính BC, diện tích S, bán kính đường tròn ngoại tiếp R và bán kính đường tròn nội tiếp r của tam giác ABC. + Tính số đo góc A trong tam giác ABC biết rằng 5ma^2 = mb^2 + mc^2 (với ma, mb, mc lần lượt là độ dài đường trung tuyến xuất phát từ các đỉnh A, B, C). + Với m là tham số của phương trình mx – 2m + 2x – 1 = 0. Tìm m để phương trình đã cho vô nghiệm.
Đề thi HK1 Toán 10 năm 2019 - 2020 trường THPT Tạ Quang Bửu - TP HCM
Nhằm giúp các em học sinh lớp 10 có tư liệu ôn tập để chuẩn bị cho kỳ thi học kì 1 môn Toán 10, sưu tầm và chia sẻ đến các em nội dung đề thi + đáp án + lời giải chi tiết đề thi HK1 Toán 10 năm học 2019 – 2020 trường THPT Tạ Quang Bửu, thành phố Hồ Chí Minh. Trích dẫn đề thi HK1 Toán 10 năm 2019 – 2020 trường THPT Tạ Quang Bửu – TP HCM : + Tìm các giá trị của tham số m để phương trình x^2 – (m – 1)x + m – 1 = 0 có nghiệm kép. + Giải và biện luận phương trình (m^2 – 4)x = m + 2 theo tham số m. + Trong mặt phẳng tọa độ Oxy, cho a = (2;-5), b = (1;3), c = (3;4). Phân tích c theo hai véctơ a và b.
Đề thi HK1 Toán 10 năm 2019 - 2020 trường THPT Lê Quý Đôn - TP HCM
Nhằm giúp các em học sinh lớp 10 có tư liệu ôn tập để chuẩn bị cho kỳ thi học kì 1 môn Toán 10, sưu tầm và chia sẻ đến các em nội dung đề thi + đáp án + lời giải chi tiết đề thi HK1 Toán 10 năm học 2019 – 2020 trường THPT Lê Quý Đôn, thành phố Hồ Chí Minh. Trích dẫn đề thi HK1 Toán 10 năm 2019 – 2020 trường THPT Lê Quý Đôn – TP HCM : + Cho a >= b. Chứng minh: a3 – b3 >= 3ab(a – b). + Cho tứ giác ABCD. Gọi E; F; I lần lượt là trung điểm AB; CD; EF. a) Chứng minh: AD + BC = 2EF. b) Gọi H; K lần lượt là trung điểm AD; BC. Tính: |IH + IK|. + Cho tam giác ABC có AB = 3, AC = 5, BAC = 120 độ. M thuộc cạnh BC sao cho BM = 2/7BC. a) Tính diện tích S và bán kính đường tròn ngoại tiếp R của tam giác ABC. b) Tính BA.BC và độ dài AM.