Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Tài liệu ôn tập thi THPT Quốc gia 2018 môn Toán - Sở GD và ĐT Tuyên Quang

Tài liệu ôn tập thi THPT Quốc gia theo định hướng phát triển năng lực học sinh năm học 2017 – 2018 môn Toán của sở GD và ĐT Tuyên Quang gồm 443 trang. Tài liệu ôn tập được xây dựng theo các chủ đề, chuyên đề Toán của cả lớp 11 và lớp 12, mỗi chủ đề, chuyên đề bao gồm các phần: Kiến thức cơ bản, luyện tập và các câu hỏi trắc nghiệm. Nội dung tài liệu : Ứng dụng của đạo hàm – Tính đơn điệu của hàm số – Cực trị của hàm số – GTLN, GTNN của hàm số. Bài toán tối ưu – Đường tiệm cận của đồ thị hàm số – Đồ thị của hàm số – Sự tương giao giữa các đồ thị. Tiếp tuyến của đồ thị hàm số Lũy thừa – Mũ – Logarit – Lũy thừa, mũ và logarit – Hàm số lũy thừa, hàm số mũ và hàm số logarit – Bài toán lãi suất – Phương trình, bất phương trình mũ – Phương trình, bất phương trình logarit Nguyên hàm – Tích phân và ứng dụng – Nguyên hàm – Tích phân – Ứng dụng của tích phân Số phức – Dạng đại số và các phép toán trên tập số phức – Phương trình bậc hai với hệ số thực – Biểu diễn hình học của số phức [ads] Khối đa diện, mặt nón, mặt trụ và mặt cầu – Khối đa diện và thể tích khối đa diện – Mặt nón, mặt trụ và mặt cầu Phương pháp tọa độ trong không gian – Hệ tọa độ trong không gian – Phương trình mặt cầu – Phương trình mặt phẳng – Phương trình đường thẳng – Vị trí tương đối giữa đường thẳng, mặt phẳng, mặt cầu – Góc và khoảng cách Lượng giác – Cung và góc lượng giác. Giá trị lượng giác của một cung. Công thức lượng giác – Hàm số lượng giác – Phương trình lượng giác cơ bản và thường gặp Tổ hợp – xác suất – Quy tắc đếm – Hoán vị, chỉnh hợp, tổ hợp – Nhị thức Niu-Tơn – Phép thử và biến cố – Xác suất của biến cố Dãy số – Giới hạn – Phương pháp quy nạp toán học – Dãy số, cấp số cộng và cấp số nhân – Giới hạn của dãy số – Giới hạn của hàm số – Hàm số liên tục Đạo hàm – Định nghĩa và ý nghĩa đạo hàm – Quy tắc tính đạo hàm – Đạo hàm của hàm số lượng giác – Vi phân – Đạo hàm cấp cao Phép dời hình, phép đồng dạng trong mặt phẳng Hình học không gian lớp 11 – Quan hệ song song trong không gian – Quan hệ vuông góc trong không gian – Khoảng cách và góc

Nguồn: toanmath.com

Đọc Sách

Tổng hợp công thức Toán THPT Nguyễn Thanh Tân
Nội dung Tổng hợp công thức Toán THPT Nguyễn Thanh Tân Bản PDF - Nội dung bài viết Tổng hợp công thức Toán THPT Nguyễn Thanh Tân Tổng hợp công thức Toán THPT Nguyễn Thanh Tân Tài liệu "Tổng hợp công thức Toán THPT Nguyễn Thanh Tân" bao gồm 24 trang, được sưu tầm và biên soạn bởi thầy giáo Nguyễn Thanh Tân, một giáo viên dạy Toán tại trường THPT Nho Quan C, tỉnh Ninh Bình. Tài liệu này là sự tổng hợp của những công thức Toán dành cho học sinh cấp 3, từ lớp 10 đến lớp 12.
201 câu hỏi chọn lọc ôn thi tốt nghiệp THPT môn Toán có đáp án chi tiết
Nội dung 201 câu hỏi chọn lọc ôn thi tốt nghiệp THPT môn Toán có đáp án chi tiết Bản PDF - Nội dung bài viết 201 câu hỏi chọn lọc ôn thi tốt nghiệp THPT môn Toán 201 câu hỏi chọn lọc ôn thi tốt nghiệp THPT môn Toán Tài liệu này bao gồm 202 trang, tập hợp 201 câu hỏi được chọn lọc để ôn thi tốt nghiệp THPT môn Toán, với đáp án và lời giải chi tiết. Các câu hỏi được lấy từ các đề thi thử THPT Quốc gia môn Toán của các trường THPT và các sở GD&ĐT trên khắp đất nước. Ví dụ về một câu hỏi trong tài liệu là: "Có bao nhiêu số thực m để đường thẳng y = mx cắt đồ thị hàm số y = x^2 tại ba điểm phân biệt A, B, C, sao cho đường thẳng OA là phân giác của góc BOC?" Đặc điểm của tài liệu này là cung cấp những câu hỏi mang tính chất bám sát đề thi THPT Quốc gia, giúp học sinh ôn tập hiệu quả và chuẩn bị tốt cho kỳ thi sắp tới. Đồng thời, việc có đáp án và lời giải chi tiết giúp học sinh hiểu rõ về cách giải các dạng bài tập khó, từ đó nâng cao kiến thức và kỹ năng giải toán của mình. Nếu bạn đang chuẩn bị cho kỳ thi tốt nghiệp THPT và đang tìm kiếm tài liệu ôn thi hiệu quả, tài liệu này chắc chắn là một lựa chọn hữu ích dành cho bạn. Hãy cùng tham khảo và ôn tập để chinh phục kỳ thi với thành công!
Chinh phục vận dụng vận dụng cao Giải tích Phan Nhật Linh
Nội dung Chinh phục vận dụng vận dụng cao Giải tích Phan Nhật Linh Bản PDF - Nội dung bài viết Chinh phục vận dụng cao Giải tích Phan Nhật Linh Chinh phục vận dụng cao Giải tích Phan Nhật Linh Chinh phục vận dụng vận dụng cao Giải tích Phan Nhật Linh là một tài liệu giáo khoa có 526 trang được biên soạn bởi thầy giáo Phan Nhật Linh. Tài liệu này tập trung vào việc giải các bài toán vận dụng và vận dụng cao trong Giải tích, với các chủ đề chính là hàm số, mũ và logarit, tích phân, số phức, tổ hợp và xác suất. Được thiết kế đặc biệt cho học sinh lớp 12, tài liệu này giúp học sinh rèn luyện kỹ năng giải bài toán để chinh phục mức điểm cao trong đề thi tốt nghiệp THPT môn Toán, đặc biệt là điểm từ 8 đến 10. Chương 1 của tài liệu tập trung vào hàm số, bao gồm tính đơn điệu, cực trị, giá trị lớn nhất/nhỏ nhất của hàm số, tiệm cận và sự tương giao của đồ thị hàm số. Chương 2 chú trọng vào mũ và logarit, với các bài toán vận dụng phức tạp và cao cấp trong lĩnh vực này. Chương 3 và 4 tập trung vào tích phân và số phức, cung cấp đề vận dụng cao để học sinh có thể áp dụng kiến thức vào bài toán thực tế. Chương 5 đề cập đến tổ hợp và xác suất, mang đến cho học sinh những bài toán vận dụng cao trong lĩnh vực này. Tài liệu Chinh phục vận dụng cao Giải tích Phan Nhật Linh là một công cụ học tập hiệu quả giúp học sinh nắm vững kiến thức và kỹ năng giải bài toán trong môn Toán, đồng thời nâng cao khả năng chuẩn bị cho kỳ thi tốt nghiệp THPT.
Tài liệu luyện thi TN THPT 2022 môn Toán Trần Thanh Hiếu (Quyển 1)
Nội dung Tài liệu luyện thi TN THPT 2022 môn Toán Trần Thanh Hiếu (Quyển 1) Bản PDF - Nội dung bài viết Tài liệu luyện thi TN THPT 2022 môn Toán Trần Thanh Hiếu (Quyển 1)PHẦN 1: GIẢI TÍCH Tài liệu luyện thi TN THPT 2022 môn Toán Trần Thanh Hiếu (Quyển 1) Tài liệu này được biên soạn bởi thầy giáo Trần Thanh Hiếu, gồm 290 trang, tập hợp các chuyên đề luyện thi TN THPT 2022 môn Toán. Nội dung chi tiết được chia thành các phần như sau: PHẦN 1: GIẢI TÍCH Chương 1: Ứng dụng đạo hàm khảo sát và vẽ đồ thị hàm số Bài 1: Sự đồng biến – nghịch biến của hàm số A. Lý thuyết cơ bản cần nhớ B. Thuật toán của một số dạng toán thường gặp 1. Tìm khoảng đơn điệu của hàm số 2. Tìm m để hàm số đồng biến – nghịch biến C. Phiếu học tập Phiếu học tập số 1 Phiếu học tập số 2 Bài 2: Cực trị của hàm số A. Lý thuyết cơ bản cần nhớ B. Thuật toán của một số dạng toán thường gặp 1. Tìm cực trị của hàm số 2. Biện luận cực trị của hàm số C. Phiếu học tập Phiếu học tập số 1 Phiếu học tập số 2 Bài 3: Giá trị lớn nhất – giá trị nhỏ nhất ... Hơn nữa, tài liệu còn đi sâu vào các phần khác như Hình học với chương trình rõ ràng, chi tiết và dễ hiểu giúp học sinh nắm vững kiến thức, chuẩn bị tốt cho kỳ thi sắp tới. Tóm lại, Tài liệu luyện thi TN THPT 2022 môn Toán Trần Thanh Hiếu (Quyển 1) là công cụ hữu ích để học sinh tự ôn tập, rèn luyện kỹ năng giải bài tập, củng cố kiến thức và chuẩn bị tốt cho kỳ thi quan trọng.