Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề cương ôn thi tốt nghiệp THPT năm 2022 môn Toán - Nguyễn Hoàng Việt

Đề cương ôn thi tốt nghiệp THPT năm 2022 môn Toán gồm 193 trang, được biên soạn bởi thầy giáo Th.S Nguyễn Hoàng Việt (giáo viên Toán trường THPT Lương Thế Vinh, tỉnh Quảng Bình). MỤC LỤC : Câu 39 1. Câu 40 12. + Dạng 1. Sự tương giao biết đồ thị hàm f(x) – loại không có tham số m 12. + Dạng 2. Sự tương giao biết đồ thị hàm f(x) – Loại có tham số m 18. + Dạng 3. Sự tương giao biết đồ thị hàm f(x) – Loại có chứa hàm lượng giác 21. + Dạng 4. Sự tương giao biết bảng biến thiên hàm số f(x) – Loại không có tham số m 23. + Dạng 5. Sự tương giao biết bảng biến thiên hàm số f(x) – Loại có tham số m 32. + Dạng 6. Sự tương giao biết bảng biến thiên hàm số f(x) – Có chứa hàm số lượng giác 34. Câu 41 37. + Dạng 7. Tính nguyên hàm & tích phân sử dụng tính chất và nguyên hàm cơ bản 37. + Dạng 8. Tính nguyên hàm & tích phân bằng phương pháp đổi biến 41. + Dạng 9. Tích phân từng phần 45. + Dạng 10. Tích phân hàm ẩn 50. Câu 42 58. Câu 43 68. + Dạng 11. Tham số m của phương trình bậc hai 68. + Dạng 12. Phương trình đưa về bậc hai 70. + Dạng 13. Tìm số phức thỏa mãn điều kiện cho trước 72. + Dạng 14. Tính toán các yếu tố của số phức (mức vận dụng) 74. + Dạng 15. Bài toán tập hợp điểm 77. Câu 44 81. + Dạng 16. Bài toán min – max với quỹ tích là đường tròn (Phương pháp hình học) 82. + Dạng 17. Bài toán min – max với quỹ tích là đường tròn (Phương pháp đại số) 91. + Dạng 18. Bài toán min – max với quỹ tích là đường thẳng (Phương pháp hình học) 97. + Dạng 19. Bài toán min – max với quỹ tích là đường thẳng (Phương pháp đại số) 100. + Dạng 20. Bài toán min – max với quỹ tích là đường tròn, đường thẳng (Phương pháp hình học) 104. + Dạng 21. Bài toán min – max với quỹ tích là elip 109. + Dạng 22. Bài toán min – max với quỹ tích là pararbol 110. + Dạng 23. Bài toán min – max với quỹ tích là hyperbol 113. Câu 45 115. + Dạng 24. Tính diện tích hình phẳng giới hạn bởi đồ thị hàm số f0(x), g0(x) khi biết các cực trị của hàm số f(x) − g(x) hoặc các cực trị của hàm số f0(x) − g0 (x) 116. + Dạng 25. Tính diện tích hình phẳng dựa vào tính chất đồ thị và các hoành độ tiếp điểm 118. + Dạng 26. Ứng dụng diện tích hình phẳng để so sánh giá trị hàm số 120 . + Dạng 27. Ứng dụng diện tích hình phẳng để tính tích phân 123 . Câu 46 126. + Dạng 28. Lập đường thẳng đi qua một điểm A, cắt đường thẳng d1 và song song với mặt phẳng (P) 126. + Dạng 29. Lập đường thẳng d đi qua M, vuông góc với d1 và cắt d2 130. + Dạng 30. Lập đường thẳng – yêu cầu tìm vectơ chỉ phương thông qua giao điểm 131. + Dạng 31. Lập đường thẳng – yêu cầu tìm vectơ chỉ phương thông qua tích có hướng 133. Câu 47 136. + Dạng 32. Khối nón bị cắt bởi một mặt phẳng đi qua đỉnh và không qua trục 136. + Dạng 33. Khối nón nội tiếp, ngoại tiếp khối tròn xoay hoặc khối đa diện 138. + Dạng 34. Khối trụ bị cắt bởi một mặt phẳng song song với trục 139. + Dạng 35. Khối trụ bị cắt bởi mặt phẳng cắt qua trục 140. + Dạng 36. Khối trụ nội tiếp ngoại tiếp khối đa diện hoặc khối tròn xoay 141. + Dạng 37. Mặt cầu ngoại tiếp khối lăng trụ 142. + Dạng 38. Mặt cầu ngoại tiếp khối chóp 143. Câu 48 148. + Dạng 39. Phương trình, bất phương trình có thể chuyển về dạng f(A) = f(B) hoặc f(A) ≤ f(B), trong đó f(x) là hàm số đơn điệu 148. + Dạng 40. Phương trình, bất phương trình f(x, y) = 0 hoặc f(x, y) ≥ 0 có hàm số f(x, y) đơn điệu theo biến x hoặc biến y 156. + Dạng 41. Phương trình, bất phương trình dạng f(x, y) = 0 hoặc f(x, y) ≥ 0, trong đó hàm số f(x, y) có đạo hàm cấp hai theo biến x hoặc biến y không đổi dấu 163. + Dạng 42. Sử dụng bất đẳng thức Bernoulli hoặc ax ≤ mx + n, ∀x ∈ [α; β] 165. Câu 49 167. + Dạng 43. Các bài toán tìm điểm 167. + Dạng 44. Các bài toán lập phương trình mặt cầu 170. + Dạng 45. Các bài toán lập phương trình mặt phẳng 173. Câu 50 178. + Dạng 46. Tìm cực trị của hàm số hợp g(x) = f[u(x)] khi biết đồ thị hàm số f(x) hay BBT hàm số f(x) 178. + Dạng 47. Tìm tham số để hàm số chứa giá trị tuyệt đối đạt giá trị lớn nhất trên một đoạn 184. + Dạng 48. Tìm tham số để hàm số hợp có số điểm cực trị cho trước 184.

Nguồn: toanmath.com

Đọc Sách

Toàn cảnh đề chính thức và đề minh họa THPT 2020 môn Toán của Bộ GD ĐT
Nội dung Toàn cảnh đề chính thức và đề minh họa THPT 2020 môn Toán của Bộ GD ĐT Bản PDF Tài liệu Toàn cảnh đề chính thức và đề minh họa THPT 2020 môn Toán của Bộ GD&ĐT là một tài liệu quý giá được biên soạn bởi nhóm Word và Biên Soạn Tài Liệu Toán. Tài liệu này bao gồm 198 trang, phân loại và hướng dẫn giải các câu hỏi và bài toán trong đề chính thức và đề minh họa THPT 2020 môn Toán của Bộ Giáo dục và Đào tạo.Mục lục tài liệu này rất đa dạng và phong phú. Bắt đầu từ phép đếm, quy tắc cộng và nhân, đến hoán vị, chỉnh hợp, tổ hợp, xác suất, cấp số cộng, cấp số nhân, đường thẳng vuông góc mặt phẳng, khoảng cách, tính đơn điệu của hàm số, cực trị của hàm số, giá trị lớn nhất, giá trị nhỏ nhất của hàm số, tiệm cận của đồ thị hàm số, đọc đồ thị và biến đổi đồ thị, tương giao của hai đồ thị, mũ - lũy thừa, logarit, hàm số mũ - logarit, phương trình và bất phương trình mũ, logarit, nguyên hàm, tích phân, ứng dụng tích phân trong thực tế, số phức, phép toán số phức, biểu diễn hình học của số phức, phương trình mặt cầu và mặt phẳng, đường thẳng, thể tích các hình học như khối chóp, khối lăng trụ, khối nón, khối trụ và khối cầu, toạ độ điểm và vectơ, và nhiều chủ đề khác.Tài liệu cung cấp kiến thức chi tiết, cụ thể và dễ hiểu với nhiều ví dụ minh họa, giúp học sinh tiếp cận và làm quen với các dạng bài toán và kiến thức cơ bản trong môn Toán. Đây thực sự là một công cụ hữu ích giúp học sinh chuẩn bị tốt cho kỳ thi THPT quan trọng.
Phát triển bài toán VD VDC trong đề thi tốt nghiệp THPT 2020 môn Toán
Nội dung Phát triển bài toán VD VDC trong đề thi tốt nghiệp THPT 2020 môn Toán Bản PDF - Nội dung bài viết Phát triển bài toán VD VDC trong đề thi tốt nghiệp THPT 2020 môn Toán Phát triển bài toán VD VDC trong đề thi tốt nghiệp THPT 2020 môn Toán Tài liệu mà chúng ta đang xem có tổng cộng 81 trang, được soạn bởi đội ngũ giáo viên tại Nhóm Toán VD - VDC. Trong tài liệu này, các thầy cô đã phân tích, bình luận và phát triển một số bài toán vận dụng - vận dụng cao (VD - VDC) trong đề thi tốt nghiệp THPT 2020 môn Toán. Cụ thể, các bài toán lớp 43, 44, 45, 46, 47, 48, 49, 50 thuộc mã đề 101 được tập trung phát triển. Trích dẫn từ tài liệu cho bài toán sau: 1. Cho hình lăng trụ đứng ABC.A'B'C' có tất cả các cạnh đều bằng a. Gọi M là trung điểm của CC', N là trung điểm của BB'. Khoảng cách từ N đến mặt phẳng (A'BM) là bao nhiêu? 2. Cho hai hộp đựng bi: hộp A có 7 viên bi xanh và 7 viên bi đỏ; hộp B có 5 viên bi xanh và 9 viên bi đỏ. Bốc ngẫu nhiên 3 viên bi từ hộp A bỏ vào hộp B, sau đó bốc ngẫu nhiên 3 viên bi từ hộp B bỏ lại hộp A. Xác suất để sau quá trình đổi bi số bi xanh trong hai hộp bằng nhau là bao nhiêu? 3. Có bao nhiêu số nguyên x sao cho mỗi x có không quá 26 số nguyên y thỏa mãn log₅(x² + y) + log₄(x² - x + 27) >= log₃(x + y)?
50 dạng toán phát triển đề minh họa THPT QG 2020 môn Toán lần 2
Nội dung 50 dạng toán phát triển đề minh họa THPT QG 2020 môn Toán lần 2 Bản PDF - Nội dung bài viết Tài liệu ôn thi THPT Quốc Gia 2020 môn Toán lần 2 Tài liệu ôn thi THPT Quốc Gia 2020 môn Toán lần 2 Tài liệu ôn thi THPT Quốc Gia 2020 môn Toán lần 2 là cuốn sách dày 1391 trang, được biên soạn bởi tập thể quý thầy, cô giáo thuộc nhóm GeoGebra Pro. Cuốn sách tập trung vào việc giúp học sinh ôn tập và chuẩn bị cho kỳ thi tốt nghiệp THPT môn Toán trong năm học 2019-2020. Đặc điểm nổi bật của cuốn sách là việc tổng hợp 50 dạng toán phát triển đề thực hành minh họa cho kỳ thi THPT Quốc Gia 2020 môn Toán. Mỗi dạng toán được chia thành ba phần: kiến thức cần nhớ, bài tập mẫu và bài tập tương tự, đều đi kèm với đáp án và lời giải chi tiết. Cuốn sách bao gồm các dạng toán từ lớp 1 đến lớp 50, bao quát nhiều chủ đề khác nhau như hoán vị, chỉnh hợp, tổ hợp, cấp số cộng, cấp số nhân, phương trình mũ, logarit, hàm số mũ, lôgarít, nguyên hàm, thể tích khối lăng trụ, diện tích mặt cầu, và nhiều dạng toán khác. Đây sẽ là nguồn tư liệu hữu ích không chỉ cho học sinh THPT đang chuẩn bị cho kỳ thi quan trọng mà còn cho giáo viên môn Toán cũng như bất kỳ ai quan tâm đến việc nâng cao kiến thức toán học của mình.
50 dạng toán phát triển đề minh họa THPT QG 2020 môn Toán lần 1
Nội dung 50 dạng toán phát triển đề minh họa THPT QG 2020 môn Toán lần 1 Bản PDF - Nội dung bài viết Sản Phẩm 50 Dạng Toán Phát Triển Đề Minh Họa THPT QG 2020 Sản Phẩm 50 Dạng Toán Phát Triển Đề Minh Họa THPT QG 2020 Tài liệu gồm 778 trang, được biên soạn bởi tập thể quý thầy, cô giáo nhóm GeoGebra Pro, tuyển tập 50 dạng toán phát triển đề minh họa THPT QG 2020 môn Toán lần 1 là tài liệu ôn tập hữu ích giúp học sinh chuẩn bị cho kỳ thi tốt nghiệp THPT môn Toán năm học 2019 – 2020. Đây là một tuyển tập đa dạng các dạng toán từ lớp 1 đến lớp 50, bao gồm các chủ đề quan trọng dành cho học sinh THPT. Từ phép đếm đơn giản, cấp số cộng, đến các dạng toán phức tạp như phương trình, hàm số, logarit và số phức, tất cả đều có mặt trong tài liệu này. Mỗi dạng toán được trình bày theo ba phần: kiến thức cần nhớ, bài tập mẫu và bài tập tương tự và phát triển. Bên cạnh đó, có đáp án và lời giải chi tiết giúp học sinh hiểu rõ từng bước giải. Với sự chuẩn bị kỹ lưỡng từ nhóm tác giả là những thầy cô giáo có kinh nghiệm, tài liệu 50 dạng toán này không chỉ là công cụ học tập hữu ích mà còn là nguồn động viên và tự tin cho các học sinh trong quá trình ôn tập và thi cử. Đồng thời, nó cũng giúp học sinh rèn luyện kỹ năng giải quyết vấn đề và tư duy logic.