Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi chọn đội tuyển dự thi HSG Quốc gia năm 2018 2019 môn Toán sở GD và ĐT Hà Tĩnh

Nội dung Đề thi chọn đội tuyển dự thi HSG Quốc gia năm 2018 2019 môn Toán sở GD và ĐT Hà Tĩnh Bản PDF Đề thi chọn đội tuyển dự thi HSG Quốc gia năm 2018 – 2019 môn Toán sở GD và ĐT Hà Tĩnh gồm 2 bài thi diễn ra trong hai ngày 20 và 21 tháng 9 năm 2018, đề thứ nhất gồm 4 bài toán tự luận, đề thứ hai gồm 4 bài toán tự luận, mỗi bài thi diễn ra trong thời gian 180 phút, đề thi có lời giải chi tiết và thang tính điểm. Trích dẫn đề thi chọn đội tuyển dự thi HSG Quốc gia năm 2018 – 2019 môn Toán sở GD và ĐT Hà Tĩnh : + Cho một khung sắt có hình dạng là một tứ diện đều mỗi cạnh có độ dài 1 mét. Một con bọ ban đầu ở tại một đỉnh của tứ diện, bắt đầu di chuyển liên tục trên các cạnh của tứ diện theo quy tắc: tại mỗi đỉnh nó đến, nó sẽ chọn một trong ba cạnh tại đỉnh đó và di chuyển theo cạnh đó đến đỉnh tiếp theo. Với mỗi số nguyên dương n, tìm số cách đi của con bọ để nó trở lại đúng đỉnh ban đầu sau khi đã đi được đúng n mét. [ads] + Cô giáo có tất cả 2020 viên kẹo gồm 20 loại kẹo khác nhau, mỗi loại ít nhất có 2 viên kẹo. Cô chia hết kẹo cho các học sinh của mình, mỗi người một số viên kẹo và không có học sinh nào nhận được nhiều hơn một viên kẹo ở một loại kẹo. Cô yêu cầu hai học sinh khác nhau bất kì so sánh các viên kẹo mình nhận được và viết số loại kẹo mà cả hai cùng có lên bảng. Biết rằng mỗi cặp học sinh bất kì đều được lên bảng đúng một lần. Gọi tổng các số được viết lên bảng là M. Xác định giá trị nhỏ nhất của M. Với giả thiết tương tự nhưng thay 20 loại kẹo khác nhau bởi 19 loại kẹo khác nhau, hãy tìm giá trị nhỏ nhất của M trong trường hợp tương ứng này. + Cho k là số tự nhiên lớn hơn 1. Xét dãy số (an) xác định bởi: a0 = 0, a1 = 1 và an+1 = kan + an-1 với mọi n ∈ N*. Xác định tất cả các giá trị của k sao cho tồn tại các số tự nhiên m, n (với m ≠ n) và các số nguyên dương p, q thỏa mãn điều kiện: am + kap = an + kaq.

Nguồn: sytu.vn

Đọc Sách

Đề học sinh giỏi cấp tỉnh Toán THPT năm 2023 - 2024 sở GDĐT Bến Tre
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi chọn học sinh giỏi cấp tỉnh môn Toán THPT năm học 2023 – 2024 sở Giáo dục và Đào tạo tỉnh Bến Tre; kỳ thi được diễn ra vào ngày 29 tháng 02 năm 2024. Trích dẫn Đề học sinh giỏi cấp tỉnh Toán THPT năm 2023 – 2024 sở GD&ĐT Bến Tre : + Có 16 quả cầu đôi một khác nhau, trong đó có 5 quả cầu màu vàng, 5 quả cầu màu xanh, 6 quả cầu màu đỏ. Có bao nhiêu cách chọn ra 10 quả cầu sao cho trong các quả cầu còn lại có đủ cả 3 màu. + Cho hình chóp S.ABCD có đáy ABCD là hình thang vuông tại A và D, AB = 2a, AD = CD = a, SA vuông góc (ABCD). Góc giữa mặt phẳng (SBC) và mặt đáy (ABCD) là 60°. Mặt phẳng (P) đi qua CD và trọng tâm G của tam giác SAB, (P) cắt các cạnh SA, SB lần lượt tại M, N. Tính thể tích khối chóp S.CDMN theo a. + Cho hình chóp S.ABC có SA, SB, SC đôi một vuông góc với nhau tại S. Đặt SA = a, SB = b, SC = c. Chứng minh: a2tanBAC = b2tanABC = c2tanACB.
Đề học sinh giỏi Toán 12 cấp tỉnh năm 2023 - 2024 sở GDĐT Đồng Nai
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi chọn học sinh giỏi môn Toán 12 cấp tỉnh năm học 2023 – 2024 sở Giáo dục và Đào tạo tỉnh Đồng Nai; kỳ thi được diễn ra vào ngày 19 tháng 01 năm 2024; đề thi có đáp án và hướng dẫn chấm điểm. Trích dẫn Đề học sinh giỏi Toán 12 cấp tỉnh năm 2023 – 2024 sở GD&ĐT Đồng Nai : + Tìm tọa độ hai điểm cực trị của đồ thị hàm số y = x3 − 3×2 + 9 và tính khoảng cách giữa hai điểm cực trị đó. Tìm nghiệm dương nhỏ nhất của phương trình 2 sin2 x − sin 2x + sin x − cos x − 1 = 0. + Cho một tấm bìa là nửa hình tròn tâm S đường kính AA0. Trên đoạn AA0 lần lượt lấy các điểm B, C, D, D0, C0, B0 thỏa mãn AB = BC = CD = DS = SD0 = D0C0 = C0B0 = B0A0, gọi O là trung điểm của SD. Lần lượt vẽ các nửa đường tròn tâm O đường kính DS, CD0, BC0, AB0. Dán hai bán kính SA với SA0 sao cho A trùng A0, B trùng B0, C trùng C0, D trùng D0 để tạo thành hình nón đỉnh S mà trên mặt xung quanh có đường xoắn ốc từ A đến S gồm các cung tròn đi qua A, B, C, D, S (như hình vẽ minh họa). Tính độ dài đường xoắn ốc, biết thể tích khối nón bằng 64√3π/3. + Hỏi có bao nhiêu cách sắp 6 quyển sách khác nhau vào 3 ngăn tủ khác nhau sao cho mỗi ngăn tủ có ít nhất một quyển sách? (Biết mỗi ngăn tủ có thể chứa được từ 1 đến 6 quyển sách và không kể thứ tự các quyển sách trong mỗi ngăn tủ).
Đề học sinh giỏi cấp tỉnh Toán 12 năm 2023 - 2024 sở GDĐT Bắc Giang
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi chọn học sinh giỏi văn hóa cấp tỉnh môn Toán 12 năm học 2023 – 2024 sở Giáo dục và Đào tạo tỉnh Bắc Giang; kỳ thi được diễn ra vào ngày 18 tháng 01 năm 2024; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn Đề học sinh giỏi cấp tỉnh Toán 12 năm 2023 – 2024 sở GD&ĐT Bắc Giang : + Có hai hộp đựng các viên bi, trong mỗi hộp chỉ có các viên bi màu đỏ và màu xanh. Tổng số viên bi của hai hộp là 26. Chọn ngẫu nhiên từ mỗi hộp ra 1 viên bi. Biết xác suất để chọn được hai viên bi màu xanh là 91 160. Tính xác suất để chọn được 2 viên bi màu đỏ. + Trong không gian với hệ tọa độ Oxyz cho điểm A(0;1;2) mặt phẳng (α): 0 xyz và 2 Sx y z 3 1 2 16. Gọi (P) là mặt phẳng đi qua A, vuông góc với (α) và đồng thời (P) cắt mặt cầu (S) theo giao tuyến là một đường tròn có bán kính nhỏ nhất. Biết phương trình tổng quát của (P) là ax by cz 1 0. Tính tổng abc. + Cho hàm số 3 2 yx 4 5 có đồ thị (C) và điểm M (-1;-2). Gọi S là tập hợp tất cả các giá trị của tham số m để đường thẳng y mx m cắt (C) tại ba điểm phân biệt A B C (1;0) (B nằm giữa A và C) sao cho hiệu diện tích của hai tam giác MAC và MAB bằng 5. Tổng tất cả các phần tử của S bằng?
Đề học sinh giỏi cấp tỉnh Toán 12 năm 2023 - 2024 sở GDĐT Kon Tum
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi chọn học sinh giỏi cấp tỉnh môn Toán 12 năm học 2023 – 2024 sở Giáo dục và Đào tạo UBND tỉnh Kon Tum; kỳ thi được diễn ra vào ngày 26 tháng 01 năm 2024; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn Đề học sinh giỏi cấp tỉnh Toán 12 năm 2023 – 2024 sở GD&ĐT Kon Tum : + Chứng tỏ rằng đồ thị hàm số 3 2 yx x m 3 2 luôn có hai điểm cực trị và khoảng cách giữa hai điểm cực trị đó không phụ thuộc vào tham số m. + Điền ngẫu nhiên 10 số tự nhiên đầu tiên 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 vào 10 ô vuông trong bảng ở hình vẽ bên dưới (mỗi ô vuông điền đúng một số). Tính xác suất để ba ô vuông liền kề nhau bất kì có tổng ba số ghi trong ba ô vuông đó chia hết cho 3. + Cho hình chóp S.ABCD có đáy ABCD là hình thoi cạnh a 60o ABC. Biết SA SB SC góc hợp bởi đường thẳng SD và mặt phẳng (ABCD) là 45o. 1. Gọi N là điểm trên cạnh SD. Tìm vị trí của điểm N để đường thẳng AN hợp với mặt phẳng (ABCD) một góc 45o. 2. Gọi M là trung điểm AB, G là trọng tâm tam giác ∆SCD. Tính khoảng cách giữa hai đường thẳng AG CM theo a.