Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Phương pháp giải các dạng toán chuyên đề số hữu tỉ - số thực

Tài liệu gồm 42 trang, tổng hợp lý thuyết SGK, phân dạng và hướng dẫn giải các dạng toán chuyên đề số hữu tỉ – số thực trong chương trình Đại số 7. Khái quát nội dung tài liệu phương pháp giải các dạng toán chuyên đề số hữu tỉ – số thực: BÀI 1 . TẬP HỢP Q CÁC SỐ HỮU TỈ. + Dạng 1. Sử dụng các kí hiệu. + Dạng 2. Biểu diễn số hữu tỉ. + Dạng 3. So sánh các số hữu tỉ. BÀI 2 . CỘNG TRỪ SỐ HỮU TỈ. + Dạng 1. Cộng trừ hai số hữu tỉ. + Dạng 2. Viết một số hữu tỉ dưới dạng tổng hoặc hiệu của hai số hữu tỉ. + Dạng 3. Tính tổng hoặc hiệu của nhiều số hữu tỉ. + Dạng 4. Tìm số hạng chưa biết trong một tổng hoặc một hiệu. + Dạng 5. Tính giá trị của biểu thức có nhiều dấu ngoặc. + Dạng 6. Tìm phần nguyên, phần lẻ của số hữu tỉ. BÀI 3 . NHÂN, CHIA SỐ HỮU TỈ. + Dạng 1. Nhân, chia hai số hữu tỉ. + Dạng 2. Viết một số hữu tỉ dưới dạng tích hoặc thương của hai số hữu tỉ. + Dạng 3. Thực hiện các phép tính với nhiều số hữu tỉ. + Dạng 4. Lập biểu thức từ các số cho trước. BÀI 4 . GIÁ TRỊ TUYỆT ĐỐI CỦA MỘT SỐ HỮU TỈ. CỘNG, TRỪ, NHÂN, CHIA SỐ THẬP PHÂN. + Dạng 1. Các bài tập về dấu giá trị tuyệt đối của một số hữu tỉ. + Dạng 2. Biểu diễn số hữu tỉ bằng các phân số khác nhau. + Dạng 3. Cộng, trừ, nhân, chia các số thập phân. + Dạng 4. So sánh các số hữu tỉ. + Dạng 5. Sử dụng máy tình bỏ túi để làm các phép tính cộng, trừ, nhân, chia số thập phân. BÀI 5 & 6 . LŨY THỪA CỦA MỘT SỐ HỮU TỈ. + Dạng 1. Sử dụng định nghĩa của lũy thừa với số mũ tự nhiên. + Dạng 2. Tính tích và thương của hai lũy thừa cùng cơ số. + Dạng 3. Tính lũy thừa của một lũy thừa. + Dạng 4. Tính lũy thừa của một tích, lũy thừa của một thương. + Dạng 5. Tìm số mũ của một lũy thừa. + Dạng 6. Tìm cơ số của một lũy thừa. + Dạng 7. Tính giá trị của biểu thức. [ads] BÀI 7 . TỈ LỆ THỨC. + Dạng 1. Thay tỉ số giữa các số hữa tỉ bằng tỉ số giữa các số nguyên. + Dạng 2. Lập tỉ lệ thức từ các tỉ số cho trước. + Dạng 3. Lập tỉ lệ thức từ đẳng thức cho trước, từ một tỉ lệ thức cho trước, từ các số cho trước. + Dạng 4. Tìm số hạng chưa biết của một tỉ lệ thức. BÀI 8 . TÍNH CHẤT CỦA DÃY TỈ SỐ BẰNG NHAU. + Dạng 1. Tìm hai số biết tổng (hoặc hiệu) và tỉ số của chúng. + Dạng 2. Chia một số thành các phần tỉ lệ với các số cho trước. + Dạng 3. Tìm hai số biết tích và tỉ số của chúng. + Dạng 4. Chứng minh đẳng thức từ một tỉ lệ thức cho trước. + Dạng 5. Thay tỉ số giữa các số hữu tỉ bằng tỉ số giữa các số nguyên. + Dạng 6. Tìm số hạng chưa biết trong một tỉ lệ thức. BÀI 9 . SỐ THẬP PHÂN HỮU HẠN. SỐ THẬP PHÂN VÔ HẠN TUẦN HOÀN. + Dạng 1. Nhận biết một phân số viết được dưới dạng số thập phân hữu hạn hoặc vô hạn tuần hoàn. + Dạng 2. Viết một tỉ số hoặc một phân số dưới dạng số thập phân. + Dạng 3. Viết số thập phân hữu hạn dưới dạng phân số tối giản. + Dạng 4. Viết số thập phân vô hạn tuần hoàn dưới dạng phân số tối giản. BÀI 10 . LÀM TRÒN SỐ. + Dạng 1. Làm tròn các số theo một yêu cầu cho trước. + Dạng 2. Giải bài toán rồi làm tròn kết quả. + Dạng 3. Áp dụng quy ước làm tròn số để ước lượng kết quả các phép tính. BÀI 11 . SỐ VÔ TỈ. KHÁI NIỆM VỀ CĂN BẬC HAI. + Dạng 1. Liên hệ giữa lũy thừa bậc hai và căn bậc hai. + Dạng 2. Tìm căn bậc hai của một số cho trước. + Dạng 3. Tìm một số biết căn bậc hai của nó. + Dạng 4. Sử dụng máy tính bỏ túi để tính căn bậc hai của một số cho trước. BÀI 12 . SỐ THỰC. + Dạng 1. Câu hỏi và bài tập về định nghĩa các tập hợp số. + Dạng 2. So sánh các số thực. + Dạng 3. Tìm số chưa biết trong một đẳng thức. + Dạng 4. Tìm giá trị của biểu thức. ÔN TẬP CHƯƠNG 1.

Nguồn: toanmath.com

Đọc Sách

Chuyên đề quan hệ giữa góc và cạnh đối diện trong một tam giác lớp 7 môn Toán
Nội dung Chuyên đề quan hệ giữa góc và cạnh đối diện trong một tam giác lớp 7 môn Toán Bản PDF - Nội dung bài viết Chuyên đề về quan hệ giữa góc và cạnh đối diện trong tam giác lớp 7Tóm tắt lí thuyết:Các dạng bài tập:Dạng 1: So sánh góc trong tam giácDạng 2: So sánh cạnh trong tam giácBài tập tự luyện: Chuyên đề về quan hệ giữa góc và cạnh đối diện trong tam giác lớp 7 Để hiểu rõ hơn về mối quan hệ giữa góc và cạnh đối diện trong một tam giác, chúng ta cần nắm vững các điều cơ bản sau đây: Tóm tắt lí thuyết: - Định lí 1: So sánh các cạnh đối diện với các góc trong một tam giác. - Định lí 2: So sánh các góc đối diện với các cạnh trong tam giác. Các dạng bài tập: Dạng 1: So sánh góc trong tam giác - TH1: Nếu các góc cần so sánh nằm trong cùng một tam giác, ta áp dụng định lí 1. - TH2: Nếu các góc cần so sánh khác tam giác, dùng góc trung gian để so sánh. Dạng 2: So sánh cạnh trong tam giác - TH1: Nếu cạnh cần so sánh nằm trong tam giác, ta áp dụng định lí 2. - TH2: Nếu cạnh cần so sánh khác tam giác, dùng góc trung gian để so sánh. Bài tập tự luyện: Để nắm vững kiến thức, hãy tự luyện tập các bài toán liên quan đến quan hệ giữa góc và cạnh đối diện trong tam giác. Hãy áp dụng các định lí và phương pháp đã học để giải quyết các bài tập một cách thành thạo.
Chuyên đề tam giác cân, đường trung trực của đoạn thẳng lớp 7 môn Toán
Nội dung Chuyên đề tam giác cân, đường trung trực của đoạn thẳng lớp 7 môn Toán Bản PDF - Nội dung bài viết Chuyên đề tam giác cân, đường trung trực của đoạn thẳng trong Toán lớp 7Phần I: Tóm tắt lí thuyếtPhần II: Các dạng bàiPhần III: Bài tập tự luyện Chuyên đề tam giác cân, đường trung trực của đoạn thẳng trong Toán lớp 7 Chuyên đề này bao gồm 26 trang tài liệu, được chia thành 3 phần chính để giúp học sinh hiểu rõ về tam giác cân và đường trung trực của đoạn thẳng. Phần I: Tóm tắt lí thuyết Phần này tóm tắt những kiến thức cơ bản về tam giác cân, tam giác đều và tính chất của đường trung trực. Học sinh sẽ được hướng dẫn cách nhận biết tam giác cân, tam giác đều, tính chất của chúng và cách áp dụng vào việc giải bài tập. Phần II: Các dạng bài Phần này giới thiệu các dạng bài tập phổ biến trong chương trình Toán lớp 7 liên quan đến tam giác cân và đường trung trực. Học sinh sẽ được hướng dẫn cách chứng minh tam giác cân, sử dụng tính chất của tam giác cân để giải quyết bài toán, và vận dụng tính chất của đường trung trực. Phần III: Bài tập tự luyện Phần này chứa các bài tập tự luyện để học sinh ôn tập và củng cố kiến thức về tam giác cân và đường trung trực. Học sinh sẽ được thực hành cách chứng minh một điểm thuộc đường trung trực và cách chứng minh một đường thẳng là đường trung trực của một đoạn thẳng.
Chuyên đề các trường hợp bằng nhau của tam giác vuông lớp 7 môn Toán
Nội dung Chuyên đề các trường hợp bằng nhau của tam giác vuông lớp 7 môn Toán Bản PDF - Nội dung bài viết Chuyên đề các trường hợp bằng nhau của tam giác vuông lớp 7 môn ToánPHẦN I. TÓM TẮT LÍ THUYẾTPHẦN II. CÁC DẠNG BÀIPHẦN III. BÀI TẬP TỰ LUYỆN Chuyên đề các trường hợp bằng nhau của tam giác vuông lớp 7 môn Toán Tài liệu này bao gồm 26 trang, với phần tóm tắt lí thuyết và hướng dẫn giải các dạng bài tập chuyên đề các trường hợp bằng nhau của tam giác vuông trong chương trình môn Toán lớp 7. PHẦN I. TÓM TẮT LÍ THUYẾT Phần này giúp sinh viên hiểu rõ về các trường hợp bằng nhau của tam giác vuông và cách chứng minh chúng. PHẦN II. CÁC DẠNG BÀI - Dạng 1: Hướng dẫn tìm hoặc chứng minh hai tam giác vuông bằng nhau bằng cách xét các điều kiện bằng nhau về cạnh – góc – cạnh, góc – cạnh – góc, cạnh huyền – góc nhọn, cạnh huyền – cạnh góc vuông. - Dạng 2: Sử dụng các trường hợp bằng nhau để chứng minh hai đoạn thẳng bằng nhau, hai góc bằng nhau. Hướng dẫn cách tính độ dài đoạn thẳng, số đo góc bằng việc chọn hai tam giác vuông có cạnh (góc) cần tính hoặc chứng minh bằng nhau, tìm điều kiện bằng nhau và suy ra kết luận từ đó. PHẦN III. BÀI TẬP TỰ LUYỆN Phần này cung cấp các bài tập tự luyện để học sinh rèn luyện kỹ năng giải các bài toán liên quan đến các trường hợp bằng nhau của tam giác vuông.
Chuyên đề trường hợp bằng nhau thứ hai và thứ ba của tam giác lớp 7 môn Toán
Nội dung Chuyên đề trường hợp bằng nhau thứ hai và thứ ba của tam giác lớp 7 môn Toán Bản PDF - Nội dung bài viết Chuyên đề trường hợp bằng nhau thứ hai và thứ ba của tam giác lớp 7 môn Toán Chuyên đề trường hợp bằng nhau thứ hai và thứ ba của tam giác lớp 7 môn Toán Tài liệu này bao gồm 36 trang, với mục đích chính là giúp học sinh lớp 7 nắm vững về các trường hợp bằng nhau thứ hai và thứ ba của tam giác. PHẦN I: TÓM TẮT LÍ THUYẾT Trong phần này, chúng ta sẽ tóm tắt về lí thuyết cơ bản về các điều kiện khi hai tam giác được xem là bằng nhau. Có ba điều kiện chính: bằng nhau cạnh - góc - cạnh, bằng nhau góc - cạnh - góc và kết luận về sự bằng nhau của hai tam giác. PHẦN II: CÁC DẠNG BÀI - Dạng 1: Trong phần này, chúng ta sẽ tìm hoặc chứng minh hai tam giác bằng nhau thông qua việc xét hai tam giác, kiểm tra ba điều kiện bằng nhau và kết luận về sự bằng nhau của hai tam giác. - Dạng 2: Chúng ta sẽ sử dụng trường hợp bằng nhau của tam giác để chứng minh một tính chất khác. Chọn hai tam giác có cạnh (góc) cần chứng minh bằng nhau, sau đó kết hợp với các tính chất đã học để chứng minh tính chất đó. PHẦN III: BÀI TẬP TỰ LUYỆN Trong phần này, học sinh sẽ được cung cấp các bài tập tự luyện để rèn luyện kỹ năng và kiến thức về chuyên đề trường hợp bằng nhau thứ hai và thứ ba của tam giác. Tài liệu này không chỉ giúp học sinh hiểu rõ về chuyên đề mà còn giúp họ áp dụng kiến thức vào giải các bài tập thực tế, từ đó nắm vững và tự tin khi học môn Toán.