Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi học sinh giỏi huyện Toán 9 năm 2019 - 2020 phòng GDĐT Nghi Lộc - Nghệ An

THCS. giới thiệu đến quý thầy, cô giáo cùng các em học sinh đề thi học sinh giỏi huyện Toán 9 năm học 2019 – 2020 phòng GD&ĐT Nghi Lộc – Nghệ An, đề thi được biên soạn theo dạng tự luận với 05 bài toán, thời gian làm bài 150 phút, kỳ thi nhằm tuyển chọn các em học sinh lớp 9 có khả năng học tập môn Toán xuất sắc trên địa bàn huyện Nghi Lộc, tỉnh Nghệ An. Trích dẫn đề thi học sinh giỏi huyện Toán 9 năm 2019 – 2020 phòng GD&ĐT Nghi Lộc – Nghệ An : + Cho hình vuông ABCD có cạnh là a. Gọi O là giao điểm của hai đường chéo AC và BD. Lấy điểm E thuộc BC sao cho BE = 1/2EC. Gọi M là giao điểm của hai đường thẳng AE và CD. Trên tia đối của tia DC lấy điểm I sao cho DI = BE. a) Chứng minh: AO.AC = a2 và 1/AI^2 + 1/AM^2 = 1/a^2. b) Trên tia đối của tia CB lấy điểm N sao cho CN = CM. Chứng minh tam giác BOE đồng dạng với tam giác BND. c) Lấy điểm F thuộc tia đối của tia CD sao cho CF = a/2, gọi H là giao điểm của AM và BF. Chứng minh CH vuông góc với AM. [ads] + Cho biểu thức P. a) Nêu điều kiện xác định và rút gọn P. b) Tìm a để P + |P| = 0. c) Tìm a thuộc Z để P thuộc Z. + Tìm các số tự nhiên x sao cho 17 + x^2 là một số chính phương.

Nguồn: toanmath.com

Đọc Sách

Đề thi HSG Toán 9 cấp huyện năm 2021 - 2022 phòng GDĐT Sơn Động - Bắc Giang
Đề thi HSG Toán 9 cấp huyện năm 2021 – 2022 phòng GD&ĐT Sơn Động – Bắc Giang được biên soạn theo hình thức đề thi trắc nghiệm khách quan kết hợp với tự luận, phần trắc nghiệm gồm 20 câu, chiếm 6,0 điểm, phần tự luận gồm 04 câu, chiếm 14,0 điểm, thời gian làm bài 120 phút, kỳ thi được diễn ra vào ngày 16 tháng 10 năm 2021, đề thi có đáp án trắc nghiệm và lời giải chi tiết tự luận.
Đề thi học sinh giỏi Toán 9 năm 2021 - 2022 phòng GDĐT Thái Hòa - Nghệ An
Đề thi học sinh giỏi Toán 9 năm 2021 – 2022 phòng GD&ĐT Thái Hòa – Nghệ An gồm 01 trang với 06 bài toán dạng tự luận, thời gian làm bài 150 phút.
Đề thi học sinh giỏi huyện Toán 9 năm 2021 - 2022 phòng GDĐT Như Thanh - Thanh Hoá
Đề thi học sinh giỏi huyện Toán 9 năm 2021 – 2022 phòng GD&ĐT Như Thanh – Thanh Hoá gồm 01 trang với 05 bài toán dạng tự luận, thời gian làm bài 150 phút. Trích dẫn đề thi học sinh giỏi huyện Toán 9 năm 2021 – 2022 phòng GD&ĐT Như Thanh – Thanh Hoá : + Tìm tất cả số nguyên tố p sao cho 4p2 + 1 và 6p2 + 1 đều là các số nguyên tố. + Cho nửa đường tròn tâm O đường kính AB = 2R. EF là dây cung di động trên nửa đường tròn sao cho E thuộc cung AF và EF = AB/2. Gọi H là giao điểm của AF, BE, C là giao điểm của AE, BF, I là giao điểm của CH, AB. 1. Chứng minh rằng tam giác ACI và tam giác ABE đồng dạng với nhau. 2. Đường thẳng AF cắt tiếp tuyến tại B ở N, các tiếp tuyến tại A, F của (O) cắt nhau ở M. Chứng minh: ON MB. 3. Xác định vị trí EF trên nửa đường tròn để tứ giác ABEF có diện tích lớn nhất. + Cho a, b, c là các số thực dương thỏa mãn: abc = 1. Hãy tìm giá trị nhỏ nhất của biểu thức P.
Đề thi chọn học sinh giỏi Toán 9 năm 2021 - 2022 phòng GDĐT Gio Linh - Quảng Trị
Đề thi chọn học sinh giỏi Toán 9 năm 2021 – 2022 phòng GD&ĐT Gio Linh – Quảng Trị gồm 01 trang với 05 bài toán dạng tự luận, thời gian làm bài 150 phút, kỳ thi được diễn ra vào thứ Bảy ngày 23 tháng 10 năm 2021. Trích dẫn đề thi chọn học sinh giỏi Toán 9 năm 2021 – 2022 phòng GD&ĐT Gio Linh – Quảng Trị : + Tìm số tự nhiên n sao cho n2 + 2n + 30 là số chính phương. + Cho tứ giác ABCD. Qua B, vẽ đường thẳng song song với đường chéo AC, đường thẳng này cắt DC tại E. Chứng minh rằng: Diện tích tam giác ADE bằng diện tích tứ giác ABCD. + Cho tam giác ABC có AB < AC, phân giác AD. Gọi E là trung điểm của BC. Qua E, vẽ đường thẳng song song với DA, đường thẳng này cắt các đường thẳng AB, AC lần lượt tại G và F. Chứng minh rằng: BG = FC.