Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi thử Toán THPT 2021 lần 3 trường THPT Thanh Miện Đoàn Thượng - Hải Dương

Ngày … tháng 06 năm 2021, trường THPT Thanh Miện và THPT Đoàn Thượng, tỉnh Hải Dương liên kết tổ chức kỳ thi thử tốt nghiệp Trung học Phổ thông môn Toán năm học 2020 – 2021 lần thứ ba. Đề thi thử Toán THPT 2021 lần 3 trường THPT Thanh Miện & Đoàn Thượng – Hải Dương gồm 06 trang với 50 câu trắc nghiệm, thời gian làm bài 90 phút, đề thi có đáp án mã đề 101 – 102 – 103 – 104 – 105 – 106 – 107 – 108. Trích dẫn đề thi thử Toán THPT 2021 lần 3 trường THPT Thanh Miện & Đoàn Thượng – Hải Dương : + Một mảnh vườn toán học có dạng hình chữ nhật, chiều dài là 16 m và chiều rộng là 8 m. Các nhà Toán học dùng hai đường Parabol, mỗi Parabol có đỉnh là trung điểm của một cạnh dài và đi qua hai mút của cạnh đối diện, phần mảnh vườn nằm ở miền trong của cả hai Parabol (phần tô đậm như hình vẽ) được trồng hoa hồng. Biết chi phí để trồng hoa hồng là 45000 đồng / m2. Hỏi các nhà Toán học phải chi bao nhiêu tiền để trồng hoa trên phần mảnh vườn đó? (Số tiền được làm tròn đến hàng nghìn). A. 2159000đồng. B. 2715000 đồng. C. 3322000đồng. D. 1920000 đồng. + Trong không gian với hệ trục tọa độ Oxyz, cho mặt cầu 2 2 2 1 1 1 25 C x y z. Đường thẳng đi qua điểm S 3 5 1 và cắt mặt cầu tại hai điểm A và B sao cho AB 6 (với giả thiết SA SB). Khi OA đạt giá trị lớn nhất, đặt d O M; còn khi OA đạt giá trị nhỏ nhất, đặt d O m. Khi đó M m M m 2 bằng? + Trong không gian với hệ tọa độ Oxyz, cho đường thẳng 1 1 1 1 2 2 x y z d và đường thẳng 2 2 3 3 2 1 2 x y z d. Lập phương trình đường thẳng d nằm trong mặt phẳng chứa hai đường thẳng 1 2 d d sao cho ba đường thẳng 1 2 d d d đồng quy và khoảng cách từ gốc tọa độ O tới đường thẳng d là lớn nhất.

Nguồn: toanmath.com

Đọc Sách

Đề thi thử TN THPT 2024 môn Toán trường THPT Trần Phú - Hà Tĩnh
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi thử tốt nghiệp THPT năm học 2023 – 2024 môn Toán trường THPT Trần Phú, tỉnh Hà Tĩnh; đề thi có đáp án trắc nghiệm mã đề 241 – 242. Trích dẫn Đề thi thử TN THPT 2024 môn Toán trường THPT Trần Phú – Hà Tĩnh : + Từ một tấm tôn hình tròn tâm O, người ta cắt ra một miếng tôn hình quạt OAB có diện tích bằng 1 4 hình tròn đó, rồi làm thành một chiếc phễu hình nón đỉnh O có thể tích là 1 15 3 V. Hỏi phần tôn còn lại của hình tròn nếu làm thành một chiếc phễu hình nón đỉnh O thì sẽ có thể tích là bao nhiêu? (xem hình vẽ bên). + Có 20 chiếc thẻ được đánh số theo thứ tự từ 1 đến 20. Chọn ngẫu nhiên ba chiếc thẻ từ 20 chiếc thẻ đó. Tính xác suất để chọn được ba chiếc thẻ sao cho tích các số trên ba chiếc thẻ đó là một số chẵn. + Mặt phẳng (A’BC) chia khối lăng trụ ABC A B C thành các khối đa diện nào? A. Hai khối chóp tứ giác. B. Một khối chóp tam giác và một khối chóp tứ giác. C. Hai khối chóp tam giác. D. Một khối chóp tam giác và một khối chóp ngũ giác.
Đề thi thử tốt nghiệp THPT 2024 môn Toán liên trường THPT - Hà Tĩnh
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi thử tốt nghiệp THPT năm học 2023 – 2024 môn Toán liên trường THPT sở Giáo dục và Đào tạo tỉnh Hà Tĩnh: THPT Cù Huy Cận – THPT Vũ Quang – THPT Đức Thọ; kỳ thi được diễn ra vào ngày 20 tháng 01 năm 2024; đề thi có đáp án và lời giải chi tiết mã đề 101 – 102 – 103 – 104. Trích dẫn Đề thi thử tốt nghiệp THPT 2024 môn Toán liên trường THPT – Hà Tĩnh : + Trong không gian với hệ tọa độ Oxyz cho mặt cầu 22 Sx y z x y 2 2 30 và hai điểm A B 350 010. Điểm M abc di động trên (S). Khi biểu thức MA MB 2 đạt giá trị nhỏ nhất thì 2abc bằng? + Xét tất cả các số thực x y sao cho 2 3 4 log 68 9 x a y a với mọi số thực dương a. Khi biểu thức 2 2 P x yxy 22 4 đạt giá trị lớn nhất thì 2x y bằng? + Cho hình nón tròn xoay có chiều cao bằng 2a, bán kính đáy bằng 3a. Một thiết diện đi qua đỉnh của hình nón có khoảng cách từ tâm của đáy đến mặt phẳng chứa thiết diện bằng 3 2 a. Diện tích của thiết diện đó bằng?
Đề thi thử Toán tốt nghiệp THPT 2024 lần 1 trường chuyên Hạ Long - Quảng Ninh
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi thử môn Toán tốt nghiệp THPT năm học 2023 – 2024 lần 1 trường THPT chuyên Hạ Long, tỉnh Quảng Ninh (mã đề 103); kỳ thi được diễn ra vào ngày … tháng 01 năm 2024. Trích dẫn Đề thi thử Toán tốt nghiệp THPT 2024 lần 1 trường chuyên Hạ Long – Quảng Ninh : + Giải bóng đá ngoại hạng Anh gồm 20 đội bóng tham gia, biết rằng mỗi đội bóng phải đá với mỗi đội bóng còn lại 2 trận (1 trận sân nhà và 1 trận sân khách). Hỏi kết thức mùa giải ban tổ chức phải tổ chức bao nhiêu trận đấu? + Cho hàm số y = x3 − 2(m + 1)x2 + (5m + 1)x − 2m − 2 có đồ thị là (C) với m là tham số. Tập S là tập hợp các giá trị nguyên của m và m thuộc (–2024;2024) để (Cm) cắt trục hoành tại ba điểm phân biệt A(2;0), B, C sao cho trong hai điểm B, C có một điểm nằm trong và một điểm nằm ngoài đường tròn có phương trình x2 + y2 = 1. Tính số các phần tử của S. + Một khúc gỗ có dạng hình khối nón có bán kính đáy bằng r = 2m, chiều cao h = 6m. Bác thợ mộc chế tác từ khúc gỗ đó thành một khúc gỗ có dạng hình khối trụ như hình vẽ. Gọi V là thể tích lớn nhất của khúc gỗ hình trụ sau khi chế tác. Tính V.
Đề thi thử TN THPT 2024 lần 1 môn Toán trường THPT Hòn Gai - Quảng Ninh
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi thử tốt nghiệp THPT năm học 2023 – 2024 lần 1 môn Toán trường THPT Hòn Gai, thành phố Hạ Long, tỉnh Quảng Ninh (mã đề 322). Trích dẫn Đề thi thử TN THPT 2024 lần 1 môn Toán trường THPT Hòn Gai – Quảng Ninh : + Cho một hình trụ tròn xoay và hình vuông ABCD cạnh a có hai đỉnh liên tiếp A, B nằm trên đường tròn đáy thứ nhất của hình trụ, hai đỉnh còn lại nằm trên đường tròn đáy thứ hai của hình trụ. Mặt phẳng (ABCD) tạo với đáy hình trụ góc 45°. Tính diện tích xung quanh hình trụ. + Người ta cần làm một cái bồn chứa dạng hình trụ có thể tích 1000 lít bằng inox để chứa nước, tính bán kính R của hình trụ đó sao cho diện tích toàn phần của bồn chứa đạt giá trị nhỏ nhất? + Trong mặt phẳng (P) cho hình chữ nhật ABCD có AB = a, AD = b. Trên các nửa đường thẳng Ax, Cy vuông góc với (P) và ở cùng một phía với mặt phẳng ấy, lần lượt lấy các điểm M, N sao cho (MBD) vuông góc với (NBD). Tìm giá trị nhỏ nhất Vmin của tứ diện MNBD.