Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề học sinh giỏi Toán 9 năm 2023 - 2024 phòng GDĐT Thanh Oai - Hà Nội

THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi môn Toán 9 năm học 2023 – 2024 phòng Giáo dục và Đào tạo huyện Thanh Oai, thành phố Hà Nội; kỳ thi được diễn ra vào ngày 09 tháng 11 năm 2023; đề thi có đáp án và hướng dẫn chấm điểm. Trích dẫn Đề học sinh giỏi Toán 9 năm 2023 – 2024 phòng GD&ĐT Thanh Oai – Hà Nội : + Cho tam giác ABC vuông tại A có đường cao AH cắt trung tuyến BE tại D. Gọi M, N lần lượt là hình chiếu của A lên các đường thẳng CD, BE. Chứng minh: a. 2 BE EN EM và AC B AB C BC sin sin. b. HMC EHA. c. BM vuông góc với MH. + Trong mặt phẳng cho 8093 điểm mà diện tích của mọi tam giác với các đỉnh là các điểm đã cho không lớn hơn 1. Chứng minh rằng trong số các điểm đã cho có thể tìm được 2024 điểm nằm trong hoặc nằm trên cạnh của một tam giác có diện tích không lớn hơn 1. + Cho các số nguyên a và b thỏa mãn S a b ab a b 2 2 3 2023 chia hết cho 5. Tìm số dư khi chia a b cho 5.

Nguồn: toanmath.com

Đọc Sách

Đề chọn ĐT thi HSG tỉnh Toán 9 năm 2022 - 2023 phòng GDĐT Nghĩa Đàn - Nghệ An
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn đội tuyển dự thi học sinh giỏi cấp tỉnh môn Toán 9 năm học 2022 – 2023 phòng Giáo dục và Đào tạo huyện Nghĩa Đàn, tỉnh Nghệ An. Trích dẫn Đề chọn ĐT thi HSG tỉnh Toán 9 năm 2022 – 2023 phòng GD&ĐT Nghĩa Đàn – Nghệ An : + Cho hai số tự nhiên a, b thỏa mãn 3a2 + a = 4b2 + b. Chứng minh a – b và 4a + 4b + 1 đều là số chính phương. + Cho tam giác ABC nhọn (AB < AC). Đường tròn tâm I nội tiếp tam giác ABC lần lượt tiếp xúc với BC, CA, AB tại D, E, F. Gọi M là trung điểm của BC. Gọi N là giao điểm của ID và EF. Qua N kẻ đường thẳng song song với BC cắt AB, AC tại Q và P. Qua A kẻ đường thẳng song song với BC cắt EF tại K. a) Chứng minh IP = IQ. b) Chứng minh IAM = FKI. c) Gọi S, L, V lần lượt là giao điểm của AI, BI, CI với BC, CA và AB. Chứng minh. + Cho p là số nguyên tố lớn hơn 5. Chứng minh rằng tồn tại một số có dạng 111…11 chia hết cho p.
Đề HSG Toán 9 vòng 3 năm 2022 - 2023 phòng GDĐT Nghi Lộc - Nghệ An
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn đội tuyển dự thi học sinh giỏi cấp tỉnh môn Toán 9 vòng 3 năm học 2022 – 2023 phòng Giáo dục và Đào tạo huyện Nghi Lộc, tỉnh Nghệ An.
Đề học sinh giỏi cấp tỉnh Toán THCS năm 2022 - 2023 sở GDĐT Khánh Hòa
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi cấp tỉnh môn Toán THCS năm học 2022 – 2023 sở Giáo dục và Đào tạo tỉnh Khánh Hòa; kỳ thi được diễn ra vào ngày 07 tháng 12 năm 2022.
Đề HSG cấp huyện Toán 9 năm 2022 - 2023 phòng GDĐT Quỳnh Lưu - Nghệ An
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi cấp huyện môn Toán 9 năm học 2022 – 2023 phòng Giáo dục và Đào tạo huyện Quỳnh Lưu, tỉnh Nghệ An; kỳ thi được diễn ra vào ngày 08 tháng 12 năm 2022. Trích dẫn Đề HSG cấp huyện Toán 9 năm 2022 – 2023 phòng GD&ĐT Quỳnh Lưu – Nghệ An : + Cho các số thực dương a, b, c thỏa mãn: abc = 1. Tìm giá trị lớn nhất của biểu thức Q. + Cho tam giác ABC vuông tại A, đường cao AH. Gọi D, K lần lượt là chân đường vuông góc kẻ từ H đến AB, AC a) Chứng minh: AD.AB = AK.AC b) Chứng minh rằng: DK là tiếp tuyến của đường tròn ngoại tiếp tam giác KHC. + Cho tam giác ABC vuông cân tại A. Trên hai cạnh AB, AC lấy hai điểm M, N sao cho AM = CN. Xác định vị trí các điểm M, N trên các cạnh AB, AC sao cho MN đạt giá trị nhỏ nhất.