Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề HK1 Toán 9 năm 2022 - 2023 phòng GDĐT Phan Rang - Tháp Chàm - Ninh Thuận

THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề kiểm tra chất lượng cuối học kỳ 1 môn Toán 9 năm học 2022 – 2023 phòng Giáo dục và Đào tạo thành phố Phan Rang – Tháp Chàm, tỉnh Ninh Thuận. Trích dẫn Đề HK1 Toán 9 năm 2022 – 2023 phòng GD&ĐT Phan Rang – Tháp Chàm – Ninh Thuận : + Cho hàm số bậc nhất y = (m − 2)x + 2 (m khác 2), có đồ thị là đường thẳng (d). a) Xác định hệ số góc của (d) biết (d) đi qua I(1;4). b) Vẽ (d) vừa tìm được ở câu a. c) Gọi A, B lần lượt là điểm cắt của (d) với trục hoành và trục tung. Tính khoảng cách từ gốc tọa độ O đến đường thẳng AB. + Một người đi tàu đánh cá muốn đến một tháp hải đăng (AB) cao 42m. Người đó đứng trên mũi tàu cá (ở điểm C) và dùng giác kế đo góc giữa mũi tàu và tia nắng chiếu từ đỉnh ngọn hải đăng đến tàu là 10. a) Tính khoảng cách từ tàu đến tháp hải đăng? b) Biết cứ đi 10m thì tàu tốn 0,02 lít dầu. Hỏi tàu đến tháp cần tối thiểu bao nhiêu lít dầu? (Kết quả làm tròn đến chữ số thập phân thứ nhất). + Cho đường tròn tâm O, đường kính AB. Gọi E là trung điểm của OB, đường thẳng vuông góc với AB tại E cắt đường tròn (O) tại C và D. Kẻ tiếp tuyến với đường tròn (O) tại C cắt đường thẳng AB tại I. a) Tứ giác BCOD là hình gì? Tại sao? b) Chứng minh ID là tiếp tuyến của đường tròn (O).

Nguồn: toanmath.com

Đọc Sách

Đề thi HK1 Toán 9 năm học 2018 - 2019 phòng GDĐT Đống Đa - Hà Nội
Đề thi HK1 Toán 9 năm học 2018 – 2019 phòng GD&ĐT Đống Đa – Hà Nội gồm 5 bài toán tự luận, các dạng toán bao gồm: tính giá trị biểu thức, giải phương trình, tính – rút gọn và tìm GTLN – GTNN của biểu thức, đồ thị hàm số bậc nhất, bài toán đường tròn … học sinh có 90 phút để giải đề, đề thi có lời giải chi tiết. Trích dẫn đề thi HK1 Toán 9 năm học 2018 – 2019 phòng GD&ĐT Đống Đa – Hà Nội : + Cho x, y, z là các số dương thay đổi thỏa mãn: xy + yz + zx = 5. Tìm giá trị nhỏ nhất của biểu thức T = 3x^2 + 3y^2 + z^2. + Cho hàm số bậc nhất y = (m – 1)x – 4 (d) (m khác 1). 1) Vẽ đồ thị hàm số khi m = 2. 2) Tìm m để (d) song song với đồ thị hàm số y = -3x + 2 (d1). 3) Tìm m để (d) cắt đồ thị hàm số y = x – 7 (d2) tại một điểm nằm ở bên trái trục tung. [ads] + Cho đường tròn (O;R) đường kính AB. Vẽ tiếp tuyến Bx của (O). Trên cùng 1 nửa mặt phẳng bờ AB có chứa Bx, lấy điểm M thuộc (O) (M khác A và B) sao cho MA > MB. Tia AM cắt Bx tại C. Từ C kẻ tiếp tuyến thứ hai CD với (O) (D là tiếp điểm). 1) Chứng minh OC ⊥ BD. 2) Chứng minh bốn điểm O, B, C, D cùng thuộc một đường tròn. 3) Chứng minh góc CMD = CDA. 4) Kẻ MH vuông góc với AB tại H. Tìm vị trí của M để chu vi tam giác OMH đạt giá trị lớn nhất.
Đề thi học kỳ 1 Toán 9 năm học 2018 - 2019 phòng GD và ĐT Bình Thạnh - TP. HCM
THCS. giới thiệu đến thầy, cô và các em học sinh lớp 9 nội dung đề thi học kỳ 1 Toán 9 năm học 2018 – 2019 phòng GD và ĐT Bình Thạnh – TP. HCM, đề gồm 1 trang với 6 bài tập tự luận, học sinh làm bài trong vòng 90 phút (không tính thời gian giám thị phát đề).
Đề thi học kỳ 1 Toán 9 năm học 2018 - 2019 phòng GD và ĐT Sơn Tây - Hà Nội
Đề thi học kỳ 1 Toán 9 năm học 2018 – 2019 phòng GD và ĐT Sơn Tây – Hà Nội gồm 5 bài toán tự luận, thời gian làm bài 90 phút, kỳ thi được tổ chức vào ngày 15 tháng 12 năm 2018. THCS. xin chia sẻ nội dung đề thi đến quý thầy, cô và các em học sinh. Trích dẫn đề thi học kỳ 1 Toán 9 năm học 2018 – 2019 phòng GD và ĐT Sơn Tây – Hà Nội : + Cho hàm số bậc nhất y = (2m – 1)x + 3 có đồ thị là đường thẳng (d). a/ Tìm m để đường thẳng (d) song song với đường thẳng y = 2x – 1. b/ Vẽ đường thẳng (d) với m vừa tìm được trên mặt phẳng tọa độ Oxy. c/ Tìm m để đường thẳng (d) và hai đường thẳng y = x + 3 và y = 2x + 1 đồng quy. [ads] + Từ một điểm A ở ngoài đường tròn (O;R), vẽ tiếp tuyến AE với đường tròn (O), (E là tiếp điểm). Vẽ dây EH vuông góc với OA tại M. a/ Biết bán kính R = 5cm; OM = 3cm. Tính độ dài dây EH. b/ Chứng minh AH là tiếp tuyến của đường tròn (O). c/ Đường thẳng qua O vuông góc với OA cắt AH tại B. Vẽ tiếp tuyến BF với đường tròn (O), (F là tiếp điểm). Chứng minh ba điểm E, O, F thẳng hàng và BF.AE = R. d/ Trên tia HB lấy điểm I (I khác B), qua I vẽ tiếp tuyến thứ hai với đường tròn (O) cắt các đường thẳng BF, AE lần lượt tại C và D. Vẽ đường thẳng IF cắt AD tại Q. Chứng minh AE = DQ.
Đề thi học kỳ 1 Toán 9 năm học 2018 - 2019 sở GDĐT Vĩnh Phúc
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi học kỳ 1 Toán 9 năm học 2018 – 2019 sở GD&ĐT Vĩnh Phúc; đề thi có đáp án + lời giải chi tiết + hướng dẫn chấm điểm. Trích dẫn đề thi học kỳ 1 Toán 9 năm học 2018 – 2019 sở GD&ĐT Vĩnh Phúc : + Cho hai hàm số bậc nhất y = 2x + 3k và y = (2m + 1)x + 2k – 3. Tìm các giá trị của m và k để đồ thị các hàm số là: a) Hai đường thẳng song song với nhau. b) Hai đường thẳng cắt nhau tại một điểm trên trục tung. + Cho đường tròn (O; 6cm) và điểm M cách O một khoảng bằng 10cm. Qua M kẻ tiếp tuyến MA với đường tròn O (A là tiếp điểm). Qua A kẻ đường thẳng vuông góc OM cắt OM và (O) lần lượt tại H và B. a) Tính độ dài đoạn thẳng AB. b) Chứng minh MB là tiếp tuyến của (O). c) Lấy N là điểm bất kì trên cung nhỏ AB kẻ tiếp tuyến thứ 3 với đường tròn cắt MA, MB lần lượt tại D và E. Tính chu vi tam giác MDE. + Tìm giá trị nhỏ nhất của biểu thức.