Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi Olympic lớp 10 môn Toán năm 2017 2018 cụm trường Thanh Xuân Cầu Giấy Hà Nội

Nội dung Đề thi Olympic lớp 10 môn Toán năm 2017 2018 cụm trường Thanh Xuân Cầu Giấy Hà Nội Bản PDF - Nội dung bài viết Đề thi Olympic Toán lớp 10 năm 2017-2018 cụm trường Thanh Xuân & Cầu Giấy - Hà Nội Đề thi Olympic Toán lớp 10 năm 2017-2018 cụm trường Thanh Xuân & Cầu Giấy - Hà Nội Đề thi Olympic Toán lớp 10 năm 2017-2018 của cụm trường Thanh Xuân & Cầu Giấy - Hà Nội bao gồm 1 trang với bài toán tự luận, thời gian làm bài 150 phút. Kỳ thi nhằm tuyển chọn các em Học sinh giỏi môn Toán khối 10, đề thi có lời giải chi tiết. Một số câu hỏi trong đề thi: Cho hàm số \(y = x^2 - 4x + 3\) có đồ thị (P). Hãy lập bảng biến thiên của hàm số đã cho và tìm tọa độ giao điểm của đồ thị (P) với trục hoành Ox. Tìm các số a, b, c sao cho hàm số \(y = f(x) = ax^2 + bx + c\) có đồ thị là một parabol với đỉnh là I(2; 9) và đi qua điểm A(-1; 0). Cho tứ giác ABCD có AC vuông góc BD và nội tiếp đường tròn tâm O bán kính R = 1. Gọi diện tích tứ giác ABCD là S và độ dài các cạnh là AB = a, BC = b, CD = c, DA = d. Chứng minh rằng \((ab + cd)(ad + bc) = 8S\). Đây là một đề thi không chỉ giúp học sinh rèn luyện kỹ năng giải các bài toán mà còn phản ánh được năng lực, sự sáng tạo và logic trong tư duy toán học của học sinh. Hy vọng rằng các em sẽ đạt kết quả tốt trong kỳ thi này.

Nguồn: sytu.vn

Đọc Sách

Đề thi Olympic Toán 10 năm 2017 - 2018 cụm trường Thanh Xuân Cầu Giấy - Hà Nội
Đề thi Olympic Toán 10 năm 2017 – 2018 cụm trường Thanh Xuân & Cầu Giấy – Hà Nội gồm 1 trang với  bài toán tự luận, thời gian làm bài 150 phút, kỳ thi nhằm tuyển chọn các em HSG môn Toán khối 10, đề thi có lời giải chi tiết . Trích dẫn đề thi Olympic Toán 10 năm 2017 – 2018 : + Cho hàm số y = x^2 – 4x + 3 có đồ thị (P). Lập bảng biến thiên của hàm số đã cho và tìm tọa độ giao điểm của đồ thị (P) với trục hoành Ox. + Tìm a, b, c sao cho hàm số y = f(x) = ax^2 + bx + c có đồ thị là một parabol với đỉnh là I(2; 9) và đường parabol đó đi qua điểm A(-1; 0). + Cho tứ giác ABCD có AC ⊥ BD và nội tiếp đường tròn tâm O bán kính R = 1. Đặt diện tích tứ giác ABCD bằng S và AB = a, BC = b, CD = c, DA = d. Chứng minh rằng (ab + cd)(ad + bc) = 8S.
Đề thi chọn HSG Toán 10 năm học 2017 - 2018 cụm Tân Yên - Bắc Giang
Đề thi chọn HSG Toán 10 năm học 2017 – 2018 cụm Tân Yên – Bắc Giang gồm 1 trang với 8 bài toán tự luận, thời gian làm bài 150 phút (không kể thời gian phát đề), kỳ thi diễn ra vào ngày 28/01/2018, đề thi có lời giải chi tiết . Trích dẫn đề thi chọn HSG Toán 10 : + Cho phương trình x^2 + 2x + 3m – 4 (m là tham số). a) Tìm các giá trị của m để phương trình có hai nghiệm. b) Tìm các giá trị của m để phương trình có hai nghiệm x1, x2 thỏa mãn x1^2.x2^2 ≤ x1^2 + x2^2 + 4. c) Tìm các giá trị của m để phương trình có hai nghiệm phân biệt cùng thuộc đoạn [-3; 4]. [ads] + Trong mặt phẳng tọa độ Oxy, cho hai điểm A(1; 2) và B(4; 3). Tìm tọa độ điểm M nằm trên trục hoành sao cho góc bằng 45 độ. + Cho tam giác đều ABC và các điểm M, N, P thỏa mãn BM = k.BC, CN = 2/3.CA, AP = 4/15.AB. Tìm k để AM vuông góc với PN.
Đề thi chọn HSG Toán 10 năm học 2017 - 2018 trường THPT Quỳ Hợp 1 - Nghệ An
Đề thi chọn HSG Toán 10 năm học 2017 – 2018 trường THPT Quỳ Hợp 1 – Nghệ An gồm 1 trang với 5 bài toán tự luận, thời gian làm bài 150 phút, thí sinh không được sử dụng máy tính cầm tay khi làm bài, kỳ thi diễn ra vào ngày 30/01/2018, đề thi có lời giải chi tiết . Trích dẫn đề thi chọn HSG Toán 10 : + Cho parabol (P): y = ax^2 + bx – 1. a. Tìm các giá trị của a; b để parabol có đỉnh S(-3/2; -11/2). b. Với giá trị của a; b tìm được ở câu 1, tìm giá trị của k để đường thẳng Δ: y = x(k + 6) + 1 cắt parabol tại hai điểm phân biệt M; N sao cho trung điểm của đoạn thẳng MN nằm trên đường thẳng d: 4x + 2y – 3 = 0. [ads] + Cho hình vuông ABCD cạnh có độ dài là a. Gọi E; F là các điểm xác định bởi BE = 1/3.BC, CF = -1/2.CD, đường thẳng BF cắt đường thẳng AE tại điểm I. + Cho tam giác đều ABC và các điểm M, N, P thỏa mãn BM = k.BC, CN = 2/3.CA, AP = 4/15.AB. Tìm k để AM vuông góc với PN.