Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề học sinh giỏi lớp 10 môn Toán cấp trường năm 2019 2020 trường Lưu Hoàng Hà Nội

Nội dung Đề học sinh giỏi lớp 10 môn Toán cấp trường năm 2019 2020 trường Lưu Hoàng Hà Nội Bản PDF - Nội dung bài viết Đề học sinh giỏi Toán lớp 10 trường THPT Lưu Hoàng Hà Nội năm 2019 -2020 Đề học sinh giỏi Toán lớp 10 trường THPT Lưu Hoàng Hà Nội năm 2019 -2020 Đề học sinh giỏi Toán lớp 10 cấp trường năm học 2019 - 2020 trường THPT Lưu Hoàng - Hà Nội bao gồm các bài toán sau: 1. Một chủ hộ kinh doanh có 32 phòng trọ cho thuê. Giá cho thuê mỗi tháng là 2.000.000đ/1 phòng trọ và không có phòng trống. Nếu tăng giá mỗi phòng lên 200.000đ/1 tháng, sẽ có 2 phòng bị bỏ trống. Hỏi chủ hộ kinh doanh nên cho thuê với giá là bao nhiêu để có thu nhập cao nhất? 2. Cho hàm số y = -x^2 + 2(m + 1)x + 1 - m^2 (với m là tham số). Tìm giá trị của m sao cho đồ thị hàm số cắt trục hoành tại hai điểm phân biệt A, B sao cho tam giác KAB vuông tại K. Hỏi giá trị của m để hàm số có giá trị lớn nhất bằng 6? 3. Trong mặt phẳng tọa độ Oxy, cho hai điểm A(1; 2) và B(4; 3). Tìm tọa độ điểm M nằm trên trục hoành sao cho góc AMB bằng 45 độ. Bạn đã xem qua nội dung của Đề học sinh giỏi Toán lớp 10 trường THPT Lưu Hoàng Hà Nội năm 2019 - 2020. Hãy thử giải các bài toán này để nâng cao kiến thức và kỹ năng giải toán của mình!

Nguồn: sytu.vn

Đọc Sách

Đề thi HSG Toán 10 năm 2018 - 2019 trường THPT Nam Tiền Hải - Thái Bình
Đề thi HSG Toán 10 năm 2018 – 2019 trường THPT Nam Tiền Hải – Thái Bình được biên soạn theo hình thức tự luận, đề gồm 01 trang với 05 bài toán, học sinh có 180 phút đẻ làm bài, kỳ thi được diễn ra vào ngày 06 tháng 03 năm 2019. Trích dẫn đề thi HSG Toán 10 năm 2018 – 2019 trường THPT Nam Tiền Hải – Thái Bình : + Trong mặt phẳng toạ độ Oxy. 1. Viết phương trình đường cao AD, phân giác trong CE của tam giác ABC biết A(4;-1), B(1;5), C(-4;-5). 2. Cho B(0;1), C(3;0). Đường phân giác trong góc BAC của tam giác ABC cắt Oy tại M(0;-7/3) và chia tam giác ABC thành hai phần có tỉ số diện tích bằng 10/11 (phần chứa điểm B có diện tích nhỏ hơn diện tích phần chứa điểm C). Gọi A(a;b) và a < 0, tính T = a^2 + b^2. + Chứng minh rằng: a.sinA + b.sinB + c.sinC = 2(ma^2 + mb^2 + mc^2)/3R với mọi tam giác ABC (a = BC, b = AC, c = AB; ma, mb, mc lần lượt là độ dài đường trung tuyến hạ từ A, B, C; R bán kính đường tròn ngoại tiếp tam giác ABC).
Đề thi học sinh giỏi Toán 10 năm 2018 - 2019 trường Đan Phượng - Hà Nội
giới thiệu đến bạn đọc nội dung đề thi học sinh giỏi Toán 10 năm 2018 – 2019 trường Đan Phượng – Hà Nội, kỳ thi được diễn ra nhằm giúp giáo viên bộ môn và nhà trường tuyển chọn những em học sinh khối lớp 10 giỏi môn Toán để bổ sung vào đội tuyển học sinh giỏi Toán 10 của nhà trường, những em được chọn sẽ được tuyên dương, khen thưởng trước toàn trường để làm tấm gương học tập cho các học sinh khác, các em sẽ được tiếp tục bồi dưỡng, rèn luyện để tham gia kỳ thi học sinh giỏi Toán cấp thành phố. Đề thi học sinh giỏi Toán 10 năm 2018 – 2019 trường Đan Phượng – Hà Nội được biên soạn theo hình thức tự luận nhằm đánh giá chính xác khả năng tư duy logic của các em, đề gồm 5 bài toán, thang điểm 20, thời gian làm bài thi môn Toán là 120 phút, đề thi có lời giải chi tiết và thang điểm. [ads] Trích dẫn đề thi học sinh giỏi Toán 10 năm 2018 – 2019 trường Đan Phượng – Hà Nội : + Trong mặt phẳng tọa độ Oxy cho hình thang ABCD với hai đáy là AB và CD. Biết diện tích hình thang bằng 14 (đơn vị diện tích), đỉnh A(1;1) và trung điểm cạnh BC là H(-1/2;0). Viết phương trình tổng quát của đường thẳng AB biết đỉnh D có hoành độ dương và D nằm trên đường thẳng d: 5x – y + 1 = 0. + Cho parabol (P): y = 2x^2 + 6x – 1. Tìm giá trị của k để đường thẳng Δ: y = (k + 6)x + 1 cắt parabol (P) tại hai điểm phân biệt M, N sao cho trung điểm của đoạn thẳng MN nằm trên đường thẳng d: y = -2x + 3/2. + Cho tam giác ABC là tam giác đều có độ dài cạnh bằng a. Trên các cạnh BC, CA, AB lần lượt lấy các điểm N, M, P sao cho BN = a/3, CM = 2a/3, AP = x (0 < x < a). Tìm giá trị của x theo a để đường thẳng AN vuông góc với đường thẳng PM.
Đề thi HSG Toán 10 năm 2018 - 2019 trường Phùng Khắc Khoan - Hà Nội
Nhằm tuyển chọn các em học sinh lớp 10 giỏi môn Toán để bổ sung vào đội ngũ học sinh giỏi Toán 10 của trường, vừa qua, trường THPT Phùng Khắc Khoan, Thạch Thất, Hà Nội đã tiến hành tổ chức kỳ thi chọn học sinh giỏi cấp trường lớp 10 môn Toán năm học 2018 – 2019. Đề thi HSG Toán 10 năm 2018 – 2019 trường Phùng Khắc Khoan – Hà Nội gồm 1 trang, đề được biên soạn theo hình thức tự luận với 6 bài toán, thời gian làm bài thi là 150 phút (không kể thời gian giám thị coi thi phát đề), đề thi có lời giải chi tiết và thang chấm điểm. [ads] Trích dẫn đề thi HSG Toán 10 năm 2018 – 2019 trường Phùng Khắc Khoan – Hà Nội : + Cho hàm số y = x^2 + x – 1 có đồ thị (P). Tìm m để đường thẳng d: y = -2x – m cắt đồ thị (P) tại hai điểm phân biệt A, B sao cho tam giác OAB vuông tại O (với O là gốc tọa độ). + Cho tam giác ABC có AB = c, AC = b và góc BAC bằng 60 độ. Các điểm M, N được xác định bởi MC = -2MB và NA = -1/2.NB. Tìm hệ thức liên hệ giữa b và c để AM và CN vuông góc với nhau. + Cho tam giác ABC có BC = a, CA = b, BA = c và diện tích là S. Biết S = b^2 – (a – c)^2. Tính tanB.