Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề KSCL đầu năm 2018 - 2019 Toán 8 phòng GD và ĐT thành phố Ninh Bình

Đề KSCL đầu năm 2018 – 2019 Toán 8 phòng GD và ĐT thành phố Ninh Bình được biên soạn theo hình thức trắc nghiệm khách quan kết hợp với tự luận, phần trắc nghiệm gồm 4 câu hỏi, chiếm 20% số điểm, phần tự luận gồm 4 bài toán, chiếm 80% số điểm, đề thi nhằm đánh giá các kiến thức Toán 8 mà học sinh vừa học, đồng thời củng cố lại các kiến thức Toán 7, đề thi có đáp án và lời giải chi tiết. Trích dẫn đề KSCL đầu năm 2018 – 2019 Toán 8 phòng GD và ĐT thành phố Ninh Bình : + Trong mặt phẳng, khẳng định nào sau đây là đúng: A. Tứ giác có 4 góc tù. B. Tứ giác có 4 góc vuông. C. Tứ giác có 4 góc nhọn. D. Tứ giác có 2 góc nhọn và 2 góc vuông. [ads] + Cho 20 điểm phân biệt trong mặt phẳng, trong đó có n điểm thẳng hàng. Cứ qua 2 điểm trong 20 điểm đã cho, ta vẽ một đường thẳng. Tìm n, nếu vẽ được tất cả là 170 đường thẳng. + Cho ΔABC cân tại A. Tia phân giác của góc ABC cắt AC tại D, tia phân giác của góc ACB cắt AB tại E. Chứng minh rằng: a) ΔABD = ΔACE. b) DE//BC. c) BE = ED= DC.

Nguồn: toanmath.com

Đọc Sách

Đề kiểm tra Toán 8 tháng 9 năm 2019 - 2020 trường Archimedes Academy - Hà Nội
Với mục đích kiểm tra đánh giá chất lượng định kỳ môn Toán đối với học sinh khối lớp 8, vừa qua, trường THCS Archimedes Academy – Hà Nội đã tổ chức kỳ thi kiểm tra tập trung Toán 8 tháng 9 năm học 2019 – 2020. Đề kiểm tra Toán 8 tháng 9 năm 2019 – 2020 trường Archimedes Academy – Hà Nội gồm 2 mã đề: đề số 1 và đề số 2, đề thi gồm 05 bài toán dạng tự luận, thời gian làm bài 90 phút. [ads] Trích dẫn đề kiểm tra Toán 8 tháng 9 năm 2019 – 2020 trường Archimedes Academy – Hà Nội : + Cho tam giác ABC, gọi M, N lần lượt là trung điểm của AB, AC. a) Tứ giác BCNM là hình gì? Vì sao? b) Gọi Q là trung điểm của NC. Đường thẳng qua Q song song với BC cắt BN tại E. Đường thẳng qua C song song với BN cắt đường thẳng QE tại K. Chứng minh rằng EK = BC. c) Đường thẳng QE cắt CM tại F. Chứng minh EF = 1/4.BC. d) Đường thẳng qua E vuông góc với AB cắt đường thẳng qua F vuông góc với AC tại I. Chứng minh tam giác BIC cân. + Chứng minh giá trị biểu thức sau không phụ thuộc vào giá trị của biến: A = (x – 3)^3 – x(x^2 + 27) + (3x)^2. + Tìm giá trị nhỏ nhất của biểu thức sau: Q = 3x^2 + 2y^2 + 4z^2 + 2xy + 4yz + 4xz – 4x – 2y + 5.