Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Kiểm tra tổng hợp Toán 10 năm 2017 - 2018 trường chuyên Hùng Vương - Bình Dương

Đề kiểm tra tổng hợp Toán 10 năm học 2017 – 2018 trường THPT chuyên Hùng Vương – Bình Dương gồm 25 câu hỏi trắc nghiệm khách quan, thời gian làm bài 45 phút, đề thi có đáp án . Trích dẫn đề kiểm tra tổng hợp Toán 10 năm 2017 – 2018 : + Các hành tinh và các sao chổi khi chuyển động xung quanh Mặt Trời có quỹ đạo là một đường Elip trong đó tâm Mặt Trời là một tiêu điểm. Điểm gần Mặt Trời nhất gọi là điểm cận nhật, điểm xa Mặt Trời nhất gọi là điểm viễn nhật. Trái Đất chuyển động xung quanh Mặt Trời theo quỹ đạo là một đường Elip có độ dài nửa trục lớn bằng 93.000.000 dặm. Tỉ số khoảng cách giữa điểm cận nhật và điểm viễn nhật đến Mặt Trời là 59/61. Tính khoảng cách từ Trái Đất đến Mặt Trời khi Trái Đất ở điểm cận nhật. Lấy giá trị gần đúng. [ads] + Ông Hoàng có một mảnh vườn hình Elip có chiều dài trục lớn và trục nhỏ lần lượt là 60m và 30m. Ông chia mảnh vườn ra làm hai nửa bằng một đường tròn tiếp xúc trong với Elip (tham khảo hình vẽ) để làm mục đích sử dụng khác nhau. Nửa bên trong đường tròn ông trồng cây lâu năm, nửa bên ngoài đường tròn ông trồng hoa màu. Tính tỉ số diện tích T giữa phần trồng cây lâu năm so với diện tích trồng hoa màu. Biết diện tích hình Elip được tính theo công thức S ab = π với a,b lần lượt là nửa độ dài trục lớn và nửa độ dài trục bé. Biết độ rộng của đường Elip là không đáng kể. + Với phép lượng giác hóa x = cost, t ∈ [0; π] thì phương trình đại số √(1 – x^2) = 4x^3 – 3x trở thành phương trình lượng giác nào sau đây?

Nguồn: toanmath.com

Đọc Sách

Đề kiểm tra định kỳ học kỳ 1 môn Toán 10 trường THPT Võ Thành Trinh - An Giang
Đề kiểm tra định kỳ học kỳ 1 môn Toán 10 trường THPT Võ Thành Trinh – An Giang gồm 4 mã đề, mỗi đề gồm 2 trang với 16 câu trắc nghiệm và 2 câu tự luận, thời gian làm bài 45 phút, tất cả các mã đề đều có đáp án . Trích dẫn đề thi : + Cho hai tập hợp A = {1; 2; 3; 4; 5} và B = {2; 4; 6; 8}. Xác định tập hợp A ∪ B. A. A ∪ B = {1; 3; 5} B. A ∪ B = {1; 2; 3; 4; 5; 6; 7; 8} C. A ∪ B = {1; 2; 3; 4; 5; 6; 8} D. A ∪ B = {2; 4} [ads] + Phủ định của mệnh đề “∀x ∈ R : x^2 + x + 2 > 0” là mệnh đề nào sau đây? A. ∃x ∈ R : x^2 + x + 2 < 0 B. ∀x ∈ R : x^2 + x + 2 < 0 C. ∃x ∈ R : x^2 + x + 2 ≤ 0 D. ∀x ∈ R : x^2 + x + 2 ≤ 0 + Hàm số nào trong các hàm số sau đây có đồ thị như hình bên? A. y = x − 3 B. y = 2x − 3 C. y = 4x − 6 D. y = −4x + 6
Đề kiểm tra định kỳ tháng 9 năm học 2017 - 2018 môn Toán 10 trường THCS - THPT Khai Minh - TP. HCM
Đề kiểm tra định kỳ tháng 9 năm học 2017 – 2018 môn Toán 10 trường THCS – THPT Khai Minh – TP. HCM gồm 8 bài toán tự luận, có lời giải chi tiết và thang điểm . Trích dẫn đề thi : + Giả sử ABC là một tam giác đã cho. Lập mệnh đề P ⇒ Q và Q ⇒ P rồi xét tính đúng sai của chúng, với: P: “Góc A bằng 90 độ” và Q: “BC^2 = AB^2 + AC^2” + Cho các tập hợp: A = [-5; 11] và B = (2; 18) Xác định các tập hợp: A ∪ B; A ∩ B; A \ B; B \ A và biểu diễn chúng lên trục số? + Phát biểu mệnh đề phủ định của mỗi mệnh đề sau và giải thích mệnh đề phủ định đó đúng hay sai? a) ∃x ∈ R: x^2 = -5 b) ∀x ∈ R: x^2 + 2x + 8 = 0 [ads]
Đề kiểm tra định kỳ lần 1 môn Toán lớp 10 trường THPT Lê Lợi - Hà Nội
Đề kiểm tra định kỳ lần 1 môn Toán lớp 10 trường THPT Lê Lợi – Hà Nội gồm 15 câu trắc nghiệm và 3 câu tự luận. Trích dẫn đề kiểm tra : + Một chiếc cổng có dạng là một đường Parabol như hình vẽ, biết cổng cao 10m, chiều rộng BC = 4m. Chọn hệ trục tọa độ Oxy như hình vẽ. a) Tìm tọa độ các điểm A, B, C b) Tìm phương trình của parabol trên + Một vật chuyển động với đồ thị vận tốc như hình bên. Tính vận tốc trung bình của vật trong 10 giây đầu? [ads] A. 9,2 m/s B. 7,6 m/s C. 12,8 m/s D. 10 m/s + Cho hàm số y = f(x) có đồ thị như hình bên. Hãy chỉ ra tất cả các khoảng mà hàm số f(x) nghịch biến? A. (−∞; 0) và (0; +∞) B. (-2; 0) C. (−∞; -2) và (2; +∞) D. (−∞; -2) và (0; +∞)
Đề ôn tập trắc nghiệm môn Toán lớp 10 trường THPT chuyên Lương Thế Vinh - Đồng Nai
Đề ôn tập trắc nghiệm môn Toán lớp 10 trường THPT chuyên Lương Thế Vinh – Đồng Nai gồm 4 mã đề, mỗi đề gồm 50 câu hỏi trắc nghiệm. Nội dung đề gồm 2 chương: + Mệnh đề và tập hợp + Hàm số bậc nhất và hàm số bậc hai Trong đề có một số câu hỏi bằng Tiếng Anh được trích dẫn từ các đề thi quốc tế, đề ôn tập có đáp án . Trích dẫn đề thi : + Xét hai hàm số: f(x) = x^2 + 2bx + 1 và g(x) = 2a(x + b), ở đây x là biến số và các hằng số a và b là các số thực. Với mỗi cặp hằng số a và b có thể được xem như là một điểm (a,b) trong mặt phẳng toạ độ Oab. Gọi S là tập hợp các điểm (a,b) sao cho đồ thị của các hàm số y = f(x) và y = g(x) không có điểm chung (trong mặt phẳng toạ độ Oxy). Diện tích của S bằng (hoặc gần bằng): [ads] A. 1 B. 4 C. 4π D. π + Cho parabol y = ax^2 + bx + c có đỉnh tại (4,−5) và cắt trục hoành tại hai điểm có hoành độ trái dấu. Trong các số a, b, c, số nào dương? A Chỉ b B Chỉ a C Chỉ c D Chỉ a và b + Biết rằng đồ thị hàm số y = ax^2 + bx + c cắt trục hoành tại hai điểm phân biệt A(x1;0), B(x2;0) (x1, x2 > 0) sao cho OA = AB. Hệ thức liên hệ giữa a, b, c là? A. 2b^2 = 9ac B. b^2 = 9ac C. b = 9ac D. b^2 = 9(a+ c)