Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Rút gọn biểu thức đại số và các bài toán liên quan

Bài toán rút gọn biểu thức đại số và các bài toán liên quan là dạng câu hỏi không thể thiếu trong các đề thi tuyển sinh vào lớp 10 môn Toán, đây là bài toán không khó, học sinh có thể làm tốt bài toán này nếu nắm vững các công thức biến đổi. Tài liệu dưới đây sẽ cung cấp cho các em phương pháp giải 12 dạng bài tập rút gọn biểu thức đại số và các bài toán có liên quan. Dạng 1 . Rút gọn biểu thức. Ngoài việc rèn kỹ năng thực hiện các phép tính trong bài toán rút gọn. Học sinh hay quên hoặc thiếu điều kiện xác định của biến x (ĐKXĐ gồm điều kiện để các căn thức bậc hai có nghĩa, các mẫu thức khác 0 và biểu thức chia (nếu có) khác 0). Dạng 2 . Tính giá trị của biểu thức A khi x = m ( với m là số hoặc biểu thức chứa x). Nếu m là biểu thức chứa căn x = m ( bằng số), trước tiên phải rút gọn; nếu m là biểu thức có dạng căn trong căn thường đưa về hằng đẳng thức để rút gọn; nếu m là biểu thức ta phải đi giải phương trình tìm x. Trước khi tính giá trị của biểu thức A, học sinh thường quên xét xem m có thỏa mãn ĐKXĐ hay không rồi mới được thay vào biểu thức đã rút gọn để tính. Dạng 3 . Tìm giá trị của biến x để A = k (với k là hằng số hoặc là biểu thức chứa x). Thực chất đây là việc giải phương trình. Học sinh thường quên khi tìm được giá trị của x không xét xem giá trị x đó có thỏa mãn ĐKXĐ của A hay không. Dạng 4 . Tìm giá trị của biến x để A ≥ k (hoặc A ≤ k, A > k, A < k …) trong đó k là hằng số hoặc là biểu thức chứa x. Thực chất đây là việc giải bất phương trình. Học sinh thường mắc sai lầm khi giải bất phương trình thường dùng tích chéo hoặc sử dụng một số phép biến đổi sai. Dạng 5 . So sánh biểu thức A với một số hoặc một biểu thức. Thực chất đây là việc đi xét hiệu của biểu thức A với một số hoặc một biểu thức rồi so sánh hiệu đó với số 0. [ads] Dạng 6 . Chứng minh biểu thức A ≥ k (hoặc A ≤ k, A > k, A < k) với k là một số. Thực chất đây là việc đưa về chứng minh đẳng thức hoặc bất đẳng thức. Ta xét hiệu A – k rồi xét dấu biểu thức. Dạng 7 . Tìm giá trị của biến x là số nguyên, số tự nhiên để biểu thức A có giá trị nguyên. Cách làm: chia tử thức cho mẫu thức, rồi tìm giá trị của biến x để mẫu thức là ước của phần dư (một số). Học sinh thường quên kết hợp với điều kiên xác định của biểu thức. Dạng 8 . Tìm giá trị của biến x là số thực, số bất kì để biểu thức A có giá trị nguyên. Học sinh thường nhầm lẫn cách làm của dạng này với dạng tìm giá trị của biến x là số nguyên, số tự nhiên để biểu thức A có giá trị nguyên. Cách làm: sử dụng ĐKXĐ để xét xem biểu thức A nằm trong khoảng giá trị nào, rồi tính giá trị của biểu thức A và từ đó tìm giá trị của biến x. Dạng 9 . Tìm giá trị của tham số để phương trình hoặc bất phương trình có nghiệm. Học sinh cần biết cách tìm điều kiện để phương trình hoặc bất phương trình có nghiệm. Dạng 10 . Tìm giá trị của biến x để A = |A| (hoặc A < |A|, A ≥ |A| …). Nếu |A| > A, suy ra A < 0. Nếu |A| = A, suy ra A ≥ 0. Dạng 11 . Tìm giá trị lớn nhất, giá trị nhỏ nhất của biểu thức A. Học sinh cần biết cách tìm cực trị của phân thức ở một số dạng tổng quát. Học sinh cần đưa biểu thức rút gọn A về một trong những dạng sau để tìm cực trị. Học sinh thường mắc sai lầm khi chỉ chứng minh biểu thức A ≥ k (hoặc A ≤ k) chưa chỉ ra dấu bằng nhưng đã kết luận cực trị của biểu thức A. Dạng 12 : Tìm giá trị lớn nhất, giá trị nhỏ nhất của A khi x thuộc N. Học sinh chú ý bài toán thường cho dưới dạng điều kiện xác định x ≥ a, x ≠ b, trong đó a < b. Ta phải tính giá trị với x là các số tự nhiện thuộc [a;b) và trường hợp x là số tự nhiên lớn hơn b.

Nguồn: toanmath.com

Đọc Sách

Tài liệu lớp 9 môn Toán chủ đề công thức nghiệm của phương trình bậc hai
Nội dung Tài liệu lớp 9 môn Toán chủ đề công thức nghiệm của phương trình bậc hai Bản PDF Tài liệu lớp 9 môn Toán với chủ đề công thức nghiệm của phương trình bậc hai cung cấp kiến thức cần nhớ, các dạng toán và bài tập chi tiết để học sinh hiểu rõ về phương trình bậc hai.I. Kiến thức cần nhớ:1. Phương trình bậc hai một ẩn:- Phương trình bậc hai một ẩn là phương trình có dạng \(ax^2 + bx + c = 0\).- Để giải phương trình bậc hai một ẩn, ta cần tìm tập nghiệm của phương trình đó.2. Công thức nghiệm của phương trình bậc hai:- Xét phương trình bậc hai \(ax^2 + bx + c = 0\) và biệt thức \(\Delta = b^2 - 4ac\).- Nếu \(\Delta < 0\), phương trình vô nghiệm.- Nếu \(\Delta = 0\), phương trình có nghiệm kép.- Nếu \(\Delta > 0\), phương trình có hai nghiệm phân biệt.3. Công thức nghiệm thu gọn của phương trình bậc hai:- Xét phương trình bậc hai \(ax^2 + bx + c = 0\) với \(b = \frac{b}{2}\).- Trong trường hợp \(\Delta < 0\), phương trình vô nghiệm.- Trong trường hợp \(\Delta = 0\), phương trình có nghiệm kép: \(x = \frac{-b}{2a}\).- Trong trường hợp \(\Delta > 0\), phương trình có hai nghiệm phân biệt: \(x = \frac{-b \pm \sqrt{\Delta}}{2a}\).II. Bài tập và các dạng toán:- Tài liệu cung cấp các dạng toán như: giải phương trình bậc hai một ẩn, sử dụng công thức nghiệm, xác định số nghiệm của phương trình, chứng minh phương trình có nghiệm, vô nghiệm.- Học sinh có thể tự ôn tập và làm bài tập về nhà để nắm vững kiến thức.Tài liệu lớp 9 môn Toán với chủ đề công thức nghiệm của phương trình bậc hai là nguồn tư liệu hữu ích giúp học sinh hiểu rõ về phương trình bậc hai và rèn luyện kỹ năng giải các dạng toán liên quan.
Tài liệu lớp 9 môn Toán chủ đề hệ thức Vi-ét và ứng dụng
Nội dung Tài liệu lớp 9 môn Toán chủ đề hệ thức Vi-ét và ứng dụng Bản PDF - Nội dung bài viết Tài liệu lớp 9 môn Toán chủ đề hệ thức Vi-ét và ứng dụngNội dung tài liệu: Tài liệu lớp 9 môn Toán chủ đề hệ thức Vi-ét và ứng dụng Tài liệu này bao gồm 36 trang, cung cấp kiến thức cần nhớ, các dạng toán và bài tập liên quan đến chủ đề hệ thức Vi-ét và ứng dụng trong chương trình môn Toán lớp 9. Tài liệu cung cấp đầy đủ đáp án và lời giải chi tiết cho các bài tập. Nội dung tài liệu: A. Lý thuyết: 1. Hệ thức Vi-ét 2. Ứng dụng của hệ thức Vi-ét B. Bài tập: Tài liệu cung cấp các dạng bài tập sau: - Dạng 1: Không giải phương trình, tính giá trị của biểu thức đối xứng giữa các nghiệm. - Dạng 2: Giải phương trình bằng phương pháp nhẩm nghiệm. - Dạng 3: Tìm hai số khi biết tổng và tích. - Dạng 4: Xét dấu các nghiệm của phương trình bậc hai. - Dạng 5: Xác định điều kiện của tham số để phương trình bậc hai có nghiệm thỏa mãn hệ thức cho trước. - Dạng 6: Tìm GTLN – GTNN của biểu thức. - Dạng 7: Tìm hệ thức giữa hai nghiệm của phương trình không phụ thuộc vào tham số. Bài tập về nhà: Tài liệu cung cấp file WORD (dành cho giáo viên) để học sinh có thể tự luyện tập thêm sau giờ học. Tóm lại, tài liệu lớp 9 môn Toán với chủ đề hệ thức Vi-ét và ứng dụng cung cấp kiến thức cần thiết, các dạng bài tập đa dạng và đáp án chi tiết, giúp học sinh nắm vững và rèn luyện kỹ năng giải bài tập hiệu quả.
Tài liệu lớp 9 môn Toán chủ đề phương trình quy về phương trình bậc hai
Nội dung Tài liệu lớp 9 môn Toán chủ đề phương trình quy về phương trình bậc hai Bản PDF Tài liệu lớp 9 môn Toán chủ đề phương trình bậc hai là tài liệu đầy đủ và chi tiết để học sinh tự học và ôn tập kiến thức về phương trình quy về phương trình bậc hai. Tài liệu gồm 27 trang, bao gồm các phần sau:A. Lý thuyết:1. Phương trình trùng phương: Đây là loại phương trình có dạng ax^2 + bx + c = 0. Để giải phương trình này, ta có thể đặt ẩn phụ t = x để đưa phương trình về dạng ax^2 + bx + c = 0.2. Phương trình chứa ẩn ở mẫu thức: Để giải phương trình này, ta cần tìm điều kiện xác định của ẩn và quy đồng mẫu thức hai vế rồi khử mẫu.3. Phương trình đưa về dạng tích: Để giải phương trình này, ta phân tích vế trái thành nhân tử và xét từng nhân tử bằng 0 để tìm nghiệm.B. Bài tập và các dạng toán:I. Phương trình không chứa tham số: Bao gồm nhiều dạng toán như giải phương trình trùng phương, phương trình chứa căn thức, và một số dạng khác.II. Phương trình chứa tham số: Bao gồm các dạng toán như phương trình bậc ba đưa được về dạng tích và phương trình trùng phương.Ngoài ra, tài liệu cũng cung cấp bài tập về nhà để học sinh ôn tập và làm thêm. Tài liệu được viết dễ hiểu, chi tiết và có đáp án cụ thể để học sinh tự kiểm tra và tự đánh giá. Đây là tài liệu hữu ích giúp học sinh nắm vững kiến thức về phương trình bậc hai và rèn luyện kỹ năng giải toán hiệu quả.
Tài liệu lớp 9 môn Toán chủ đề bài toán về đường thẳng và parabol
Nội dung Tài liệu lớp 9 môn Toán chủ đề bài toán về đường thẳng và parabol Bản PDF - Nội dung bài viết Tài liệu học Toán lớp 9 chủ đề đường thẳng và parabol Tài liệu học Toán lớp 9 chủ đề đường thẳng và parabol Tài liệu này bao gồm 08 trang, cung cấp kiến thức cần nhớ, các dạng toán và bài tập liên quan đến đường thẳng và parabol trong chương trình Toán lớp 9. Mọi bài tập đều có đáp án và lời giải chi tiết. Bài toán về đường thẳng và parabol thường đưa ra phương trình của đường thẳng d (dạng y = mx + n) và parabol P (dạng y = ax^2 + bx + c) và yêu cầu tìm số giao điểm giữa chúng. Để giải bài toán này, ta có thể sử dụng phương pháp so sánh biệt thức ∆ của phương trình hoành độ giao điểm của d và P. Qua bảng thống kê số giao điểm và biệt thức ∆, ta có thể dễ dàng xác định vị trí tương đối của đường thẳng và parabol: không cắt, tiếp xúc hoặc cắt tại hai điểm phân biệt. Tài liệu cung cấp một loạt bài tập giúp học sinh ôn tập và nắm vững kiến thức về đường thẳng và parabol. File WORD dành cho giáo viên giúp dễ dàng sử dụng và chỉnh sửa theo nhu cầu.