Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi thử Toán THPT Quốc gia lần 1 năm 2018 - 2019 trường Quảng Xương 1 - Thanh Hóa

Đề thi thử Toán THPT Quốc gia lần 1 năm 2018 – 2019 trường Quảng Xương 1 – Thanh Hóa mã đề 468 được biên soạn và tổ chức thi tại trường vào ngày Chủ Nhật, 02 tháng 12 năm 2018 nhằm giúp học sinh làm quen với kỳ thi THPTQG môn Toán, nắm được cấu trúc đề thi, ôn tập lại các kiến thức Toán 10, Toán 11 và Toán 12 đã được học, rèn luyện và nâng cao kỹ năng giải toán, thử sức với các câu vận dụng cao … đề gồm 06 trang với 50 câu hỏi và bài toán trắc nghiệm khách quan, học sinh làm bài trong thời gian 90 phút (không tính thời gian giám thị phát đề), đề thi có đáp án và lời giải chi tiết các câu hỏi khó. Trích dẫn đề thi thử Toán THPT Quốc gia lần 1 năm 2018 – 2019 trường Quảng Xương 1 – Thanh Hóa : + Thầy Tuấn (giáo viên trường THPT Quảng Xương 1 – Thanh Hóa) có 15 cuốn sách gồm 4 cuốn sách Toán, 5 cuốn sách Lý và 6 cuốn sách Hoá. Các cuốn sách đổi một khác nhau. Thầy chọn ngẫu nhiên 8 cuốn sách để làm phần thưởng cho một học sinh. Tính xác suất để sổ cuốn sách còn lại của thầy Tuấn có đủ 3 môn. [ads] + Cho khối chóp S.ABCD có đáy là hình bình hành AB = 3, AD = 4, góc BAD = 120°. Cạnh bên SA = 2√3 vuông góc với đáy. Gọi M, N, P lần lượt là trung điểm các cạnh SA, AD và BC và α là góc giữa hai mặt phẳng (SAC) và (MNP). Chọn khẳng định đúng trong các khẳng định sau đây. +  Cho hàm số y = (x + 1)/(x – 1) có đồ thị (C), biết cả hai đường thẳng d1: y = a1x + b1; d2: y = a2x + b2 đi qua điểm I(1;1) và cắt đồ thị (C) tại 4 điểm tạo thành một hình chữ nhật. Khi a1 + a2 = 5/2, giá trị biểu thức P = b1.b2 bằng?

Nguồn: toanmath.com

Đọc Sách

Đề thi thử tốt nghiệp THPT 2023 môn Toán trường THCS - THPT Hồng Đức - TP HCM
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi thử tốt nghiệp THPT năm 2023 môn Toán trường THCS – THPT Hồng Đức, thành phố Hồ Chí Minh; đề thi có đáp án mã đề 001 002 003 004 và hướng dẫn giải chi tiết các câu vận dụng – vận dụng cao. Trích dẫn Đề thi thử tốt nghiệp THPT 2023 môn Toán trường THCS – THPT Hồng Đức – TP HCM : + Biết rằng vi khuẩn E.coli là vi khuẩn gây tiêu chảy đường ruột, gây đau bụng dữ dội, ngoài ra cứ sau 20 phút thì số lượng vi khuẩn tăng gấp đôi, nghĩa là số lượng tính theo công thức 0 2n S S 0 S là số lượng ban đầu, n là số lần nhân đôi. Ban đầu chỉ có 40 con vi khuẩn nói trên trong đường ruột, hỏi sau bao lâu số lượng vi khuẩn là 671088640 con? + Trong một đợt phong trào “Thanh niên tình nguyện” có 5 học sinh khối 12, 4 học sinh khối 11, và 3 học sinh khối 10, được chia làm nhiệm vụ ở 4 thôn khác nhau M, N, P, Q (Mỗi thôn 3 học sinh). Tính xác suất để thôn nào cũng có học sinh khối 12 và học sinh khối 11. + Cho tam giác ABC có BC a BAC 135. Trên đường thẳng vuông góc với (ABC) tại A lấy điểm S thỏa mãn SA a 2. Hình chiếu vuông góc của A trên SB, SC lần lượt là M, N. Số đo góc giữa hai mặt phẳng (ABC) và (AMN) bằng?
Đề thi thử tốt nghiệp THPT 2023 môn Toán trường THPT Gia Định - TP HCM
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi thử kỳ thi tốt nghiệp THPT Quốc gia năm học 2022 – 2023 môn Toán trường THPT Gia Định, thành phố Hồ Chí Minh; đề thi có đáp án và lời giải chi tiết. Trích dẫn Đề thi thử tốt nghiệp THPT 2023 môn Toán trường THPT Gia Định – TP HCM : + Cho hàm số y = f(x) xác định và liên tục trên đoạn 5 3 và có đồ thị như hình vẽ. Biết rằng diện tích hình phẳng 123 SSS giới hạn bởi đồ thị hàm số yfx và đường cong 2ygxaxbxc lần lượt là mnp. Tích phân 35dfxx bằng? + Trong không gian Oxyz cho mặt phẳng 70 Pxyz đường thẳng 122xyzd và mặt cầu 222 125 Sxyz. Gọi AB là hai điểm trên mặt cầu S và 4 AB AB là hai điểm nằm trên mặt phẳng P sao cho AABB cùng song song với đường thẳng d. Giá trị lớn nhất của tổng độ dài AABB gần nhất với giá trị nào sau đây? + Cho hình nón đỉnh S đáy là hình tròn tâm O góc ở đỉnh của hình nón là 120. Cắt hình nón bởi mặt phẳng đi qua đỉnh S được thiết diện là tam giác vuông SAB, trong đó AB thuộc đường tròn đáy. Biết rằng khoảng cách giữa SO và AB bằng 3. Diện tích xung quanh của hình nón bằng?
Đề thi thử tốt nghiệp THPT năm 2023 môn Toán sở GDĐT Hà Tĩnh
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi thử tốt nghiệp Trung học Phổ thông năm 2023 môn Toán sở Giáo dục và Đào tạo tỉnh Hà Tĩnh (mã đề 001); kỳ thi được diễn ra vào chiều thứ Tư ngày 12 tháng 04 năm 2023. Trích dẫn Đề thi thử tốt nghiệp THPT năm 2023 môn Toán sở GD&ĐT Hà Tĩnh : + Trên tập hợp các số phức, xét phương trình z4 + 2(m + 2)z2 + 3m + 2 = 0 (m là tham số thực). Có bao nhiêu giá trị của tham số m sao cho phương trình đã cho có bốn nghiệm phân biệt và bốn điểm A, B, C, D biểu diễn bốn nghiệm đó trên mặt phẳng phức tạo thành một tứ giác có diện tích bằng 4? + Cho khối hộp chữ nhật ABCD.A’B’C’D’ có đáy là hình vuông cạnh bằng 2a. Gọi M, N lần lượt là trung điểm của AB và B’C′. Biết rằng góc giữa đường thẳng MN và đường thẳng AA’ bằng 30°. Thể tích của khối hộp chữ nhật đã cho bằng? + Trong không gian Oxyz, cho mặt cầu (S) tâm I(1;2;3), bán kính R = 5 và điểm P(2;4;5) nằm bên trong mặt cầu. Qua P dựng 3 dây cung AA’, BB’, CC’ của mặt cầu (S) đôi một vuông góc với nhau. Dựng hình hộp chữ nhật có ba cạnh là PA, PB, PC. Gọi PQ là đường chéo của hình hộp chữ nhật đó. Biết rằng Q luôn chạy trên một mặt cầu cố định. Bán kính của mặt cầu đó bằng?
Đề thi thử TN THPT 2023 môn Toán lần 1 trường THPT Nho Quan A - Ninh Bình
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi thử tốt nghiệp THPT năm học 2022 – 2023 môn Toán lần 1 trường THPT Nho Quan A, tỉnh Ninh Bình; đề thi có đáp án và lời giải chi tiết mã đề LẺ và mã đề CHẴN. Trích dẫn Đề thi thử TN THPT 2023 môn Toán lần 1 trường THPT Nho Quan A – Ninh Bình : + Cho khối lăng trụ ABC A B C có đáy là tam giác đều, hình chiếu vuông góc của B lên mặt phẳng ABC trùng với trọng tâm tam giác ABC, góc giữa hai mặt phẳng A B C và BCC B bằng 60. Khoảng cách giữa hai đường thẳng AA và B C bằng 3a. Thể tích khối lăng trụ đã cho bằng? + Trong không gian Oxyz, cho đường thẳng 2 1 1 2 1 2 x y z d và hai điểm A 1 2 1 và B 0 1 2. Gọi P là mặt phẳng song song với đường thẳng AB và đường thẳng d. Viết phương trình mặt phẳng P biết khoảng cách giữa d và P bằng 2 và P cắt Ox tại điểm có hoành độ dương. + Cho hình nón có đỉnh S, chiều cao bằng 3a. Gọi A và B là hai điểm thuộc đường tròn đáy sao cho diện tích tam giác SAB bằng 2 9a, khoảng cách từ tâm của đường tròn đáy đến mặt phẳng SAB bằng a. Tính thể tích của khối nón được giới hạn bởi hình nón đã cho.