Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Chuyên đề định lí đảo và hệ quả của định lí Ta-lét

Tài liệu gồm 14 trang, tóm tắt lý thuyết trọng tâm cần đạt, phân dạng và hướng dẫn giải các dạng toán, tuyển chọn các bài tập từ cơ bản đến nâng cao chuyên đề định lí đảo và hệ quả của định lí Ta-lét, có đáp án và lời giải chi tiết, hỗ trợ học sinh trong quá trình học tập chương trình Hình học 8 chương 3: Tam giác đồng dạng. I. KIẾN THỨC CẦN NHỚ 1. Định lí Ta-lét đảo: Nếu một đường thẳng cắt hai cạnh của một tam giác và định ra trên hai cạnh này những đoạn thẳng tương ứng tỉ lệ thì đường thẳng đó song song với cạnh còn lại của tam giác. 2. Hệ quả của định lí Ta-lét: Nếu một đường thẳng cắt hai cạnh của một tam giác và song song với cạnh còn lại thì nó tạo thành một tam giác mới có ba cạnh tỉ lệ với ba cạnh của tam giác đã cho. II. BÀI TẬP MINH HỌA A. CÁC DẠNG TOÁN CƠ BẢN DẠNG 1. Tính độ dài đoạn thẳng. Chia đoạn thẳng cho trước thành các phần bằng nhau. 1. Tính độ dài đoạn thẳng: + Xác định đường thẳng song song với một cạnh của tam giác. + Áp dụng hệ quả của định lí Ta-lét để lập tỉ lệ thức của các đoạn thẳng. + Thay số vào hệ thức rồi giải phương trình. 2. Chia đoạn thẳng cho trước thành các phần bằng nhau cách sử dụng hệ quả của định lí Ta-lét hoặc tính chất của đường thẳng song song cách đều. DẠNG 2. Chứng minh hệ thức hình học. + Xác định đường thẳng song song với một cạnh của tam giác. + Áp dụng hệ quả của định lí Ta-lét để lập tỉ lệ thức của các đoạn thẳng. + Sử dụng các tính chất của tỉ lệ thức hoặc cộng hay nhân theo vế các đẳng thức hình học. DẠNG 3. Chứng minh hai đường thẳng song song. + Sử dụng định lí Ta-lét, lập tỉ lệ thức giữa các đoạn thẳng. + Áp dụng định lí Ta-lét đảo, kết luận hai đường thẳng song song. DẠNG 4. Vẽ thêm đường thẳng song song để chứng minh hệ thức hình học, tính tỉ số hai đoạn thẳng. + Vẽ thêm đường thẳng song song. + Áp dụng hệ quả của định lí Ta-lét để lập tỉ lệ thức giữa các đoạn thẳng. + Biến đổi tỉ lệ thức. B. DẠNG BÀI NÂNG CAO TỔNG HỢP TALET VÀ LIÊN QUAN

Nguồn: toanmath.com

Đọc Sách

Chuyên đề hình thang cân
Tài liệu gồm 19 trang, tóm tắt lý thuyết trọng tâm cần đạt, phân dạng và hướng dẫn giải các dạng toán, tuyển chọn các bài tập từ cơ bản đến nâng cao chuyên đề hình thang cân, có đáp án và lời giải chi tiết, hỗ trợ học sinh trong quá trình học tập chương trình Hình học 8 chương 1: Tứ giác. I. TÓM TẮT LÝ THUYẾT 1. Khái niệm: Hình thang cân là hình thang có hai góc kề một đáy bằng nhau. 2. Tính chất: + Trong hình thang cân, hai cạnh bên bằng nhau. + Trong hình thang cân, hai đuờng chéo bằng nhau. 3. Dấu hiệu nhận biết: + Hình thang có hai góc kề một cạnh đáy bằng nhau là hình thang cân. + Hình thang có hai đường chéo bằng nhau là hình thang cân. II. BÀI TẬP VÀ CÁC DẠNG TOÁN A. CÁC DẠNG BÀI MINH HỌA Dạng 1. Tính số đo góc, độ dài cạnh và diện tích hình thang cân. Phương pháp giải: Sử dụng tính chất hình thang cân về cạnh góc, đường chéo và công thức tính diện tích hình thang để tính toán. Dạng 2. Chứng minh hình thang cân. Phương pháp giải: Sử dụng dấu hiệu nhận biết hình thang cân. Dạng 3. Chứng minh các cạnh bằng nhau, các góc bằng nhau trong hình thang cân. B. PHIẾU BÀI TỰ LUYỆN
Chuyên đề hình thang
Tài liệu gồm 09 trang, tóm tắt lý thuyết trọng tâm cần đạt, phân dạng và hướng dẫn giải các dạng toán, tuyển chọn các bài tập từ cơ bản đến nâng cao chuyên đề hình thang, có đáp án và lời giải chi tiết, hỗ trợ học sinh trong quá trình học tập chương trình Hình học 8 chương 1: Tứ giác. I. TÓM TẮT LÝ THUYẾT II. BÀI TẬP VÀ CÁC DẠNG TOÁN A. CÁC DẠNG BÀI MINH HỌA Dạng 1. Tính số đo góc. Phương pháp giải: Sử dụng tính chất hai đường thẳng song song và tổng bốn góc của một tứ giác. Kết hợp các kiến thức đã học và tính chất dãy tỉ số bằng nhau, toán tổng hiệu … để tính ra số đo các góc. Dạng 2. Chứng minh hình thang, hình thang vuông. Phương pháp giải: Sử dụng định nghĩa hình thang, hình thang vuông. Dạng 3. Chứng minh mối liên hệ giữa các cạnh, tính diện tích của hình thang, hình thang vuông. B. PHIẾU BÀI TỰ LUYỆN
Chuyên đề tứ giác
Tài liệu gồm 15 trang, tóm tắt lý thuyết trọng tâm cần đạt, phân dạng và hướng dẫn giải các dạng toán, tuyển chọn các bài tập từ cơ bản đến nâng cao chuyên đề tứ giác, có đáp án và lời giải chi tiết, hỗ trợ học sinh trong quá trình học tập chương trình Hình học 8 chương 1: Tứ giác. I. TÓM TẮT LÝ THUYẾT II. BÀI TẬP VÀ CÁC DẠNG TOÁN A. CÁC DẠNG BÀI MINH HỌA CƠ BẢN Dạng 1. Tính số đo góc. Dạng 2. Tìm mối liên hệ giữa các cạnh, đường chéo của tứ giác. Dạng 3. Tổng hợp. B. DẠNG BÀI NÂNG CAO PHÁT TRIỂN TƯ DUY Dạng 1. Tính số đo góc. Dạng 2. So sánh các độ dài. Dạng 3. Bài toán giải bằng phương trình tô màu. C. PHIẾU BÀI TỰ LUYỆN CƠ BẢN VÀ NÂNG CAO
Tuyển tập 405 bài toán giải bằng cách lập phương trình có đáp án chi tiết
Tài liệu gồm 183 trang, được biên soạn bởi thầy giáo Nguyễn Chí Thành, tuyển tập 405 bài toán giải bằng cách lập phương trình có đáp án và lời giải chi tiết, giúp học sinh lớp 8 tham khảo khi học chương trình Toán 8 phần Đại số 8 chương 3: Phương trình bậc nhất một ẩn. Trích dẫn tài liệu tuyển tập 405 bài toán giải bằng cách lập phương trình có đáp án chi tiết: + Hai cây cọ mọc đối diện nhau ở hai bên bờ sông, cách nhau 50 thước, một cây cao 30 thước, một cây cao 20 thước. trên ngọn của mỗi cây có một con chim đang đậu. Bỗng nhiên cả hai con chim đều nhìn thấy một con cá bơi trên mặt nước giữa hai cây, chúng bổ nhào xuống con cá cùng một lúc với vận tốc như nhau và cùng đến đích một lúc. Tính khoảng cách từ gốc cây cao hơn đến con cá. + Tiểu sử của nhà toán học cố đại nổi tiếng Diophante (Đi – ô – phăng) được tóm tắt trên bia mộ của ông như sau: Hỡi người qua đường! Đây là nơi chôn cất di hài của Diophante, người mà một phần sáu cuộc đời là tuổi niên thiếu huy hoàng; một phần mười hai cuộc đời nữa trôi qua, trên cằm đã mọc râu lún phún. Diophante lấy vợ, một phần bảy cuộc đời trong cảnh vợ chồng hiếm hoi. Năm năm trôi qua, ông sung sướng khi có cậu con trai đầu lòng khôi ngô. Nhưng cậu ta chỉ sống được bằng nửa cuộc đời đẹp đẽ của cha. Rút cục thì với nỗi buồn thương sâu sắc, ông chỉ sống thêm được 4 năm nữa từ sau khi cậu ta lìa đời”. Tính tuổi thọ của Diophante. + Một người dự định đi từ A đến B trong một thời gian quy định với vận tốc 10km/h. Sau khi đi được nửa quãng đường người đó nghỉ 30 phút nên để đến B đúng dự định người đó tăng vận tốc lên 15km/h. Tính quãng đường AB.