Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi thử Toán THPT Quốc gia 2019 lần 3 trường THPT Quảng Xương 1 - Thanh Hóa

Thứ Bảy ngày 17 tháng 03 năm 2019, trường THPT Quảng Xương 1, tỉnh Thanh Hóa tổ chức kỳ thi giao lưu kiến thức thi THPT Quốc gia môn Toán lần thứ ba năm học 2018 – 2019, đây là kỳ thi định kỳ được tổ chức thường xuyên trong quá trình các em chuẩn bị cho kỳ thi THPT Quốc gia môn Toán năm 2019, nhằm giúp các em được củng cố và rèn luyện thường xuyên để nâng cao kiến thức môn Toán. Đề thi thử Toán THPT Quốc gia 2019 lần 3 trường THPT Quảng Xương 1 – Thanh Hóa được biên soạn dựa trên cấu trúc chuẩn đề tham khảo THPT Quốc gia môn Toán của Bộ Giáo dục vào Đào tạo, đề gồm 06 trang với 50 câu trắc nghiệm khách quan, thời gian làm bài 90 phút, kết quả thi sẽ được đăng tải trên website của nhà trường vào ngày 25 tháng 03 năm 2019, kỳ thi giao lưu lần 4 được tổ chức vào ngày 26 tháng 05 năm 2019. [ads] Trích dẫn đề thi thử Toán THPT Quốc gia 2019 lần 3 trường THPT Quảng Xương 1 – Thanh Hóa : + Một viên gạch hoa hình vuông cạnh 80 cm. Người thiết kế đã sử dụng bốn đường parabol có chung đỉnh tại tâm của viên gạch để tạo ra bốn cánh hoa (được tô màu sẫm như hình vẽ bên). Diện tích mỗi cánh hoa của viên gạch bằng? + Cho lăng trụ tam giác ABC.A’B’C’. Gọi M, N, P lần lượt là trung điểm của các cạnh A’B’, BC, CC’. Mặt phẳng (MNP) chia khối lăng trụ thành hai phần, phần chứa điểm B có thể tích là V1. Gọi V là thể tích khối lăng trụ. Tính tỉ số V1/V. + Số lượng của loại vi khuẩn A trong một phòng thí nghiệm được tính theo công thức s(t) = s(0).2^t trong đó s(0) là số lượng vi khuẩn A lúc ban đầu, s(t) là số lượng vi khuẩn A có sau t phút. Biết sau 3 phút thì số lượng vi khuẩn A là 625 nghìn con. Hỏi sau bao lâu, kể từ lúc ban đầu, số lượng vi khuẩn A là 20 triệu con?

Nguồn: toanmath.com

Đọc Sách

Đề thi thử tốt nghiệp THPT 2022 môn Toán lần 2 trường THPT Phụ Dực - Thái Bình
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi thử tốt nghiệp THPT năm 2022 môn Toán lần 2 trường THPT Phụ Dực, tỉnh Thái Bình; đề thi có đáp án mã đề 101 – 102 – 103 – 104. Trích dẫn đề thi thử tốt nghiệp THPT 2022 môn Toán lần 2 trường THPT Phụ Dực – Thái Bình : + Cho hình trụ có đường kính đáy bằng 5. Hình vuông ABCD nội tiếp hình trụ với hai điểm A B thuộc đường tròn là đáy trên và C D thuộc đường tròn đáy dưới của hình trụ và AB < 3. Biết diện tích hình chiếu của hình vuông ABCD trên mặt đáy bằng 2 (đơn vị diện tích). Tính thể tích của khối trụ đó. + Trong hệ tọa độ Oxyz cho mặt cầu 22 2 (S) x z 1 7 y. Hỏi có bao nhiêu điểm M trên (Oxy), M có tọa độ nguyên sao cho qua M kẻ được ít nhất hai tiếp tuyến vuông góc với nhau đến mặt cầu (S)? + Cho hai hàm đa thức bậc 4 và bậc 3 là y f (x) y g (x) (hình vẽ dưới đây chỉ mang tính chất minh họa). Biết rằng hai đồ thị y g (x) y f (x) tiếp xúc nhau tại điểm có hoành độ bằng 1 và cắt nhau tại 2 điểm khác có hoành độ lần lượt là -2; 0. Gọi S1, S2 lần lượt là diện tích hình phẳng giới hạn bởi hai đồ thị trên ở nửa mặt phẳng bên trái và nửa bên phải của trục tung. Khi 2 2 15 S thì?
Đề thi thử Toán TN THPT 2022 lần 1 trường Nguyễn Cảnh Chân - Nghệ An
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi thử môn Toán tốt nghiệp THPT năm học 2021 – 2022 lần 1 trường THPT Nguyễn Cảnh Chân, huyện Thanh Chương, tỉnh Nghệ An; đề thi mã đề 001 gồm 06 trang với 50 câu trắc nghiệm, thời gian học sinh làm bài thi thử là 90 phút (không kể thời gian giám thị phát đề), đề thi có đáp án. Trích dẫn đề thi thử Toán TN THPT 2022 lần 1 trường Nguyễn Cảnh Chân – Nghệ An : + Trong không gian Oxyz cho điểm và mặt phẳng. Biết rằng khi tham số m thay đổi thì mặt phẳng (P) luôn tiếp xúc với hai mặt cầu cố định cùng đi qua A là (S1) và (S2). Gọi M và N là hai điểm lần lượt nằm trên (S1) và (S2). Tìm GTLN của MN? + Cho hai hàm số và (m là tham số thực) có đồ thị lần lượt là (C1) và (C2). Tập hợp tất cả các giá trị của để và cắt nhau tại đúng bốn điểm phân biệt là? + Cho lăng trụ có chiều cao bằng 6 và đáy là tam giác đều cạnh bằng 4. Gọi M, N, P lần lượt là tâm của các mặt bên. Thể tích của khối đa diện lồi có các đỉnh là các điểm bằng?
Đề thi thử tốt nghiệp THPT 2022 môn Toán lần 1 sở GDĐT Bình Phước
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi thử tốt nghiệp THPT năm 2022 môn Toán lần 1 sở Giáo dục và Đào tạo UBND tỉnh Bình Phước. Trích dẫn đề thi thử tốt nghiệp THPT 2022 môn Toán lần 1 sở GD&ĐT Bình Phước : + Trong không gian Oxyz, cho mặt cầu 2 2 2 S x y z 1 2 9 và điểm A 2 1 2. Từ A kẻ ba tiếp tuyến bất kì AM AN AP đến S. Gọi T là điểm thay đổi trên mặt phẳng MNP sao cho từ T kẻ được hai tiếp tuyến vuông góc với nhau đến S và cả hai tiếp tuyến này đều nằm trong MNP. Khoảng cách từ T đến giao điểm của đường thẳng 1 2 1 3 x t y t z t với mặt phẳng MNP có giá trị nhỏ nhất là? + Cho hàm số y f x có đạo hàm là 2 2 f x x x x x 2. Gọi S là tập hợp tất cả các giá trị nguyên dương của tham số m để hàm số 1 2 6 2 f x x m có 5 điểm cực trị. Tính tổng tất cả các phần tử của S. + Trên parabol 2 P y x lấy hai điểm A B 1 1 2 4. Gọi M là điểm trên cung AB của P sao cho diện tích của tam giác AMB lớn nhất. Biết chu vi tam giác MAB là a b c2 5 29 khi đó giá trị a b c bằng?
Đề thi thử Toán tốt nghiệp THPT 2022 lần 2 trường Hai Bà Trưng - TT Huế
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi thử môn Toán ôn thi tốt nghiệp THPT năm học 2021 – 2022 lần thứ hai trường THPT Hai Bà Trưng, tỉnh Thừa Thiên Huế (mã đề 132). Trích dẫn đề thi thử Toán tốt nghiệp THPT 2022 lần 2 trường Hai Bà Trưng – TT Huế : + Cho hàm số ƒ(x) = ax4 + bx3 + cx2 + dx + e với a b c d e là các số thực. Đồ thị của hai hàm số y = f'(x) và y= f”(x) cắt nhau tại các điểm trong đó có hai điểm là M N (tham khảo hình vẽ). Biết diện tích miền gạch chéo bằng 8. Tính diện tích hình phẳng giới hạn bởi đồ thị của hai hàm số y = f'(x) và y = f”(x). + Trong không gian Oxyz cho hai mặt phẳng (P): 3x – 4z + 8 = 0 và mặt phẳng (Q): 3x – 4z – 12 = 0. Gọi (S) là mặt cầu đi qua gốc tọa độ O và tiếp xúc với cả hai mặt phẳng (P) và (Q). Biết rằng khi (S) thay đổi thì tâm của nó luôn nằm trên một đường tròn (C) có tâm H(a;b;c), bán kính r. Tính T. + Trên tập hợp các số phức, xét phương trình z2 – 2z + m²  = 0 (m là tham số thực). Có bao nhiêu giá trị nguyên của m thuộc đoạn [-10;10] để phương trình đó có hai nghiệm phân biệt z1 và z2 thỏa mãn.