Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi HSG Toán 10 năm 2021 - 2022 cụm THPT huyện Lục Nam - Bắc Giang

giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 10 đề thi học sinh giỏi cấp cơ sở môn Toán lớp 10 năm học 2021 – 2022 cụm THPT huyện Lục Nam, tỉnh Bắc Giang; đề thi gồm 40 câu trắc nghiệm (14 điểm) và 03 câu tự luận (06 điểm), thời gian học sinh làm bài thi là 120 phút (không kể thời gian giao đề). Trích dẫn đề thi HSG Toán 10 năm 2021 – 2022 cụm THPT huyện Lục Nam – Bắc Giang : + Một cửa hàng bán đồ nam ở TT Bích Động gồm áo sơ mi, quần âu và áo phông. Ngày thứ nhất bán được 22 áo sơ mi, 12 quần âu và 18 áo phông, doanh thu là 12580000 đồng. Ngày thứ hai bán được 16 áo sơ mi, 10 quần âu và 20 áo phông, doanh thu là 10800000 đồng. Ngày thứ ba bán được 24 áo sơ mi, 15 quần âu và 12 áo phông, doanh thu là 12960000 đồng. Hỏi giá bán mỗi áo sơ mi, mỗi quần âu và mỗi áo phông là bao nhiêu? Biết giá từng loại trong ba ngày không thay đổi. A. 250000 đồng/áo sơ mi, 320000 đồng/quần âu, 180000 đồng/áo phông. B. 260000 đồng/áo sơ mi, 300000 đồng/quần âu, 190000 đồng/áo phông. C. 250000 đồng/áo sơ mi, 330000 đồng/quần âu, 170000 đồng/áo phông. D. 200000 đồng/áo sơ mi, 300000 đồng/quần âu, 190000 đồng/áo phông. + Quảng cáo sản phẩm trên truyền hình là một hoạt động quan trọng trong kinh doanh của các doanh nghiệp. Theo Thông báo số 10 / 2019 , giá quảng cáo trên VTV1 là 30 triệu đồng cho 15 giây/1 lần quảng cáo vào khoảng 20 h30 ; là 6 triệu đồng cho 15 giây/l lần quảng cáo vào khung giờ 16h00 -17h00. Một công ty dự định chi không quá 900 triệu đồng để quảng cáo trên VTV1 với yêu cầu quảng cáo về số lần phát như sau: ít nhất 10 lần quảng cáo vào khoảng 20 h30 và không quá 50 lần quảng cáo vào khung giờ 16 h00 17 h00  . Tổng số lần xuất hiện quảng cáo của công ty trên VTV1 nhiều nhất là bao nhiêu? + Cho tam giác ABC là tam giác đều có độ dài cạnh bằng 1. Trên các cạnh BC CA AB lần lượt lấy các điểm N M P sao cho 1 3 BN 2 3 CM AP x với 0 1 x. Biết rằng có hai giá trị của x để đường thẳng AN tạo với đường thẳng PM một góc 60, tính tổng của hai giá trị đó. + Cho tam giác ABC vuông tại A. Gọi là góc giữa hai đường trung tuyến BD và CK. Tìm giá trị nhỏ nhất của cos. + Cho tam giác ABC thỏa mãn AB AC 24 và sin sin sin cos cos B C A B C. Gọi M là trung điểm của cạnh BC và G là trọng tâm của tam giác ABC. Tìm diện tích tam giác MBG.

Nguồn: toanmath.com

Đọc Sách

Đề chọn đội tuyển Olympic 2021 lớp 10 môn Toán lần 1 trường chuyên Nguyễn Bỉnh Khiêm Quảng Nam
Nội dung Đề chọn đội tuyển Olympic 2021 lớp 10 môn Toán lần 1 trường chuyên Nguyễn Bỉnh Khiêm Quảng Nam Bản PDF - Nội dung bài viết Chọn Đội Tuyển Olympic 2021 Lớp 10 Môn Toán - Trường Chuyên Nguyễn Bỉnh Khiêm Quảng Nam Chọn Đội Tuyển Olympic 2021 Lớp 10 Môn Toán - Trường Chuyên Nguyễn Bỉnh Khiêm Quảng Nam Ngày 19 tháng 09 năm 2020, trường THPT chuyên Nguyễn Bỉnh Khiêm, thành phố Tam Kỳ, tỉnh Quảng Nam đã tổ chức kỳ thi chọn đội dự tuyển Olympic năm 2021 môn Toán lớp 10, lần thi đầu tiên. Đề chọn đội tuyển Olympic 2021 Toán lớp 10 lần 1 trường chuyên Nguyễn Bỉnh Khiêm - Quảng Nam bao gồm 08 bài toán, thời gian làm bài 150 phút. Một số bài toán trong đề chọn đội tuyển Olympic 2021 Toán lớp 10 lần 1 trường chuyên Nguyễn Bỉnh Khiêm - Quảng Nam là: Cho tam giác ABC có M là trung điểm của BC. Trên các cạnh AB và AC lấy các điểm E và F sao cho AE = AF. Đường trung tuyến AM và đường thẳng EF cắt nhau tại Q. Chứng minh rằng: QE/QF = AC/AB. Trên bảng cho 2020 số tự nhiên liên tiếp từ 1 đến 2020. Thực hiện liên tiếp phép biến đổi: xóa đi hai số bất kì a, b rồi viết thêm số a + b - 1/3ab vào bảng. Khi chỉ còn lại một số, tìm số đó. Cho a, b, c là độ dài ba cạnh của một tam giác, có góc lớn nhất bằng α. Biết a và b là hai nghiệm của phương trình x^2 + 4(c + 2) = (c + 4)x. Tính α. Đây là những thách thức dành cho các học sinh lớp 10 trường chuyên Nguyễn Bỉnh Khiêm - Quảng Nam để giành lấy suất tham gia Olympic Toán năm 2021. Hy vọng các em sẽ tự tin và đạt kết quả tốt trong kỳ thi sắp tới.
Đề học sinh giỏi lớp 10 môn Toán cấp trường năm 2019 2020 trường Lưu Hoàng Hà Nội
Nội dung Đề học sinh giỏi lớp 10 môn Toán cấp trường năm 2019 2020 trường Lưu Hoàng Hà Nội Bản PDF - Nội dung bài viết Đề học sinh giỏi Toán lớp 10 trường THPT Lưu Hoàng Hà Nội năm 2019 -2020 Đề học sinh giỏi Toán lớp 10 trường THPT Lưu Hoàng Hà Nội năm 2019 -2020 Đề học sinh giỏi Toán lớp 10 cấp trường năm học 2019 - 2020 trường THPT Lưu Hoàng - Hà Nội bao gồm các bài toán sau: 1. Một chủ hộ kinh doanh có 32 phòng trọ cho thuê. Giá cho thuê mỗi tháng là 2.000.000đ/1 phòng trọ và không có phòng trống. Nếu tăng giá mỗi phòng lên 200.000đ/1 tháng, sẽ có 2 phòng bị bỏ trống. Hỏi chủ hộ kinh doanh nên cho thuê với giá là bao nhiêu để có thu nhập cao nhất? 2. Cho hàm số y = -x^2 + 2(m + 1)x + 1 - m^2 (với m là tham số). Tìm giá trị của m sao cho đồ thị hàm số cắt trục hoành tại hai điểm phân biệt A, B sao cho tam giác KAB vuông tại K. Hỏi giá trị của m để hàm số có giá trị lớn nhất bằng 6? 3. Trong mặt phẳng tọa độ Oxy, cho hai điểm A(1; 2) và B(4; 3). Tìm tọa độ điểm M nằm trên trục hoành sao cho góc AMB bằng 45 độ. Bạn đã xem qua nội dung của Đề học sinh giỏi Toán lớp 10 trường THPT Lưu Hoàng Hà Nội năm 2019 - 2020. Hãy thử giải các bài toán này để nâng cao kiến thức và kỹ năng giải toán của mình!
Đề Olympic lớp 10 môn Toán năm 2019 cụm trường THPT Hà Đông Hoài Đức Hà Nội
Nội dung Đề Olympic lớp 10 môn Toán năm 2019 cụm trường THPT Hà Đông Hoài Đức Hà Nội Bản PDF - Nội dung bài viết Đề Olympic Toán lớp 10 cụm trường THPT Hà Đông - Hoài Đức - Hà Nội Đề Olympic Toán lớp 10 cụm trường THPT Hà Đông - Hoài Đức - Hà Nội Sytu xin giới thiệu đến các bạn đề thi Olympic Toán lớp 10 năm học 2018 - 2019 của cụm trường THPT Hà Đông - Hoài Đức - Hà Nội. Đề thi gồm 01 trang với 04 bài toán dạng tự luận, thang điểm bài thi là 20 điểm, học sinh có 150 phút để làm bài. Trích đề Olympic Toán lớp 10 năm 2019 cụm trường THPT Hà Đông - Hoài Đức - Hà Nội: Cho tam giác ABC có BC = a, CA = b, AB = c, độ dài ba đường cao kẻ từ đỉnh A, B, C lần lượt là ha, hb, hc. Biết rằng asinA + bsinB + csinC = ha + hb + hc, chứng minh tam giác ABC đều. Cho hai tia Ax, By với AB = 100 (cm), góc xAB = 45° và By ⊥ AB. Chất điểm X chuyển động trên tia Ax bắt đầu từ A với vận tốc 3√2 (cm/s), cùng lúc đó chất điểm Y chuyển động trên tia By bắt đầu từ B với vận tốc 4 (cm/s). Tìm giá trị nhỏ nhất của đoạn MN. Cho phương trình x^4 - 2(m + 2)x^2 + 2m + 3 = 0 (m là tham số). Tìm tất cả các giá trị của tham số m để phương trình có 4 nghiệm phân biệt x1, x2, x3, x4 thỏa mãn x1^2 + x2^2 + x3^2 + x4^2 + = 52. Đề thi Olympic Toán lớp 10 năm 2019 cụm trường THPT Hà Đông - Hoài Đức - Hà Nội là cơ hội để học sinh thử sức và cải thiện kỹ năng giải các bài toán Toán khó, phần thưởng không chỉ là điểm số mà còn là sự tự tin và kiến thức mới mẻ. Chúc các bạn thành công!
Đề học sinh giỏi lớp 10 môn Toán cấp trường năm 2018 2019 trường Lưu Hoàng Hà Nội
Nội dung Đề học sinh giỏi lớp 10 môn Toán cấp trường năm 2018 2019 trường Lưu Hoàng Hà Nội Bản PDF - Nội dung bài viết Đề học sinh giỏi lớp 10 môn Toán cấp trường năm 2018 2019 trường Lưu Hoàng Hà Nội Đề học sinh giỏi lớp 10 môn Toán cấp trường năm 2018 2019 trường Lưu Hoàng Hà Nội Đề học sinh giỏi Toán lớp 10 cấp trường năm học 2018 – 2019 trường THPT Lưu Hoàng – Hà Nội là một bộ đề thi chất lượng với đáp án và lời giải chi tiết. Đề thi bao gồm các câu hỏi thú vị và đòi hỏi sự tư duy logic và khả năng giải quyết vấn đề của học sinh. Trích dẫn một số câu hỏi trong đề bao gồm: Một nông trại dự định trồng cà rốt và khoai tây trên diện tích 5 ha. Tính toán việc sử dụng phân vi sinh để trồng từng loại cây sao cho thu được tổng số tiền lãi cao nhất. Giải bài toán về tam giác ABC với các điều kiện về độ dài các cạnh và tọa độ của các đỉnh, đồng thời tìm tọa độ điểm M trên trục hoành sao cho tổng khoảng cách từ M đến các đỉnh của tam giác là nhỏ nhất. Đề thi mang tính thách thức cao và đưa ra những bài toán thú vị, giúp học sinh rèn luyện khả năng tư duy logic và giải quyết vấn đề. Đồng thời, đề thi cũng giúp học sinh ôn tập kiến thức đã học và chuẩn bị tốt cho kỳ thi học sinh giỏi.