Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề tuyển sinh lớp 10 môn Toán (vòng 2) năm 2023 trường THPT chuyên KHTN - Hà Nội

THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề chính thức kỳ thi tuyển sinh vào lớp 10 môn Toán (vòng 2) năm 2023 trường THPT chuyên KHTN, Đại học Khoa học Tự nhiên, Đại học Quốc gia Hà Nội; đề thi có đáp án và lời giải chi tiết (đáp án và lời giải được thực hiện bởi CLB Toán A1: Nguyễn Nhất Huy – Trần Nguyễn Đức Nhật – Phan Anh Quân – Trịnh Huy Vũ). Trích dẫn Đề tuyển sinh lớp 10 môn Toán (vòng 2) năm 2023 trường THPT chuyên KHTN – Hà Nội : + Cho tam giác ABC nhọn vói AB < AC nội tiếp trong đường tròn (O) có tiếp tuyến tại A của (O) cắt BC ở T sao cho TB > BC. Gọi P và E lần lượt là trung điểm của TA và TC. 1) Chứng minh rằng tứ giác APEB nội tiếp. 2) Gọi giao điểm thứ hai của AE với (O) là F. Lấy G thuộc (O) sao cho FG song song với AC. Chứng minh rằng AT G d TAF d. 3) Gọi H là trực tâm của tam giác ABC,D là giao điểm của AH và BC. M là trung điểm BC. K đối xứng với A qua BC. N thuộc đường thẳng AM sao cho KN song song với HM. Lấy S thuộc BC sao cho NS ⊥ NK. Dựng R thuộc tia AK sao cho AR·AH = AD2. Q là điểm sao cho PQ ⊥ AS và SQ ⊥ AO. Chứng minh rằng điểm đối xứng của A qua QR thuộc đường tròn đường kính DN. + Viết 100 số nguyên dương đầu tiên 1; 2; …; 100 vào một bảng ô vuông kích thước 10×10 một cách tuỳ ý sao cho mỗi ô vuông được viết đúng một số. Chứng minh rằng tồn tại hai ô kề nhau (hai ô có cạnh chung) mà hai số được viết ở hai ô này có hiệu lớn hơn hoặc bằng 10? + Tìm tất cả các cặp số nguyên dương (x; y) thỏa mãn: 4x + (1 + 3y)(1 + 7y) = 2x(3y + 7y + 2).

Nguồn: toanmath.com

Đọc Sách

Đề thi tuyển sinh lớp 10 THPT chuyên năm 2017 môn Toán sở GD và ĐT Bà Rịa - Vũng Tàu
Đề thi tuyển sinh lớp 10 THPT chuyên năm 2017 môn Toán sở GD và ĐT Bà Rịa – Vũng Tàu gồm 5 câu hỏi tự luận, có lời giải chi tiết. Trích một số bài toán trong đề: + Cho parabol (P): y = –x^2 và đường thẳng (d): y = 4x – m a) Vẽ parabol (P) b) Tìm tất cả các giá trị của tham số m để (d) và (P) có đúng một điểm chung + Cho nửa đường tròn (O) có đường kính AB = 2R. CD là dây cung thay đổi của nửa đường tròn sao cho CD = R và C thuộc cung AD (C khác A và D khác B). AD cắt BC tại H, hai đường thẳng AC và BD cắt nhau tại F. [ads] a) Chứng minh tứ giác CFDH nội tiếp b) Chứng minh CF.CA = CH.CB c) Gọi I là trung diểm của HF. Chứng minh tia OI là tia phân giác của góc COD d) Chứng minh điểm I thuộc một đường tròn cố định khi CD thay đổi
Đề thi thử tuyển sinh vào lớp 10 năm 2017 môn Toán trường THCS Lương Thế Vinh - TP. HCM
Đề thi thử tuyển sinh vào lớp 10 năm 2017 môn Toán trường THCS Lương Thế Vinh – TP. HCM gồm 6 bài tập tự luận, đề thi có lời giải chi tiết. Trích một số bài toán trong đề: + Cho đường tròn (O; R) và điểm M nằm ngoài (O). Vẽ 2 tiếp tuyến MA, MB và cát tuyến MCD của (O) (A, B là tiếp điểm, C nằm giữa M và D; A và C nằm khác phía đối với đường thẳng MO). Gọi I là trung điểm CD. [ads] a) Chứng minh: MB^2 = MC.MD b) Chứng minh tứ giác AOIB nội tiếp c) Tia BI cắt (O) tại J. Chứng minh: AD^2 = AJ.MD d) Đường thẳng qua I song song với DB cắt AB tại K, tia CK cắt OB tại G. Tính bán kính đường tròn ngoại tiếp ∆CIG theo R + Hàng tháng một người gửi vào ngân hàng 5.000.000đ với lãi suất 0,6%/tháng. Hỏi sau 15 tháng người đó nhận được số tiền cả gốc lẫn lãi là bao nhiêu? Biết rằng hàng tháng người đó không rút lãi ra.
Tuyển chọn các đề thi tuyển sinh vào lớp 10 môn Toán - Nguyễn Hoàng Nam
+ Được tuyển chọn từ tổng hợp các đề thi hay nhất của các tỉnh thành phố năm học 2013 – 2014. + Có bổ sung một số câu hỏi trọng tâm thường ra thi. + Các bài hình học khó đều có hình vẽ sẵn, được ký hiệu và ghi sơ đồ để hướng dẫn học sinh suy nghĩ.
Tuyển tập 21 đề thi thử tuyển sinh vào lớp 10 năm 2017 môn Toán
Tài liệu gồm 32 trang tuyển tập 21 đề thi thử tuyển sinh vào lớp 10 năm 2017 môn Toán. Một số đề có hướng dẫn giải.