Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Chuyên đề khoảng cách từ điểm đến mặt phẳng - Trần Mạnh Tường

Tài liệu gồm 15 trang, được biên soạn bởi thầy giáo Trần Mạnh Tường (giáo viên tiếp sức chinh phục kỳ thi tốt nghiệp THPT năm 2020 môn Toán trên kênh truyền hình Giáo dục Quốc gia VTV7), hướng dẫn các phương pháp xác định và tính khoảng cách từ điểm đến mặt phẳng trong không gian, đây là dạng toán thường gặp trong chương trình Hình học lớp 11, Hình học lớp 12 và các đề thi tốt nghiệp THPT môn Toán. I. KIẾN THỨC CẦN NHỚ 1. Khoảng cách giữa điểm và mặt phẳng. Khoảng cách giữa một điểm và một mặt phẳng là khoảng cách từ điểm đó tới hình chiếu vuông góc của nó lên mặt phẳng đó. 2. Khoảng cách giữa một đường thẳng và một mặt phẳng song song. Khoảng cách giữa một đường thẳng và một mặt phẳng song song là khoảng cách từ một điểm bất kì trên đường thẳng này tới mặt phẳng kia. 3. Khoảng cách giữa hai mặt phẳng song song. Khoảng cách giữa hai mặt phẳng song song là khoảng cách từ một điểm bất kì trên mặt phẳng này tới mặt phẳng kia. [ads] 4. Các phương pháp thường dùng để tính khoảng cách từ điểm đến mặt phẳng. a. Dùng định nghĩa. b. Phương pháp đổi điểm (dùng tỉ số khoảng cách). Khi sử dụng phương pháp này, ta nên cố gắng đưa việc tính khoảng cách từ 1 điểm đến mặt phẳng về việc tính khoảng cách từ chân đường cao của hình chóp hoặc lăng trụ đến mặt phẳng. c. Phương pháp thể tích. d. Một công thức thường dùng trong bài toán tính khoảng cách. II. BÀI TẬP VẬN DỤNG Tuyển tập 15 câu hỏi và bài toán trắc nghiệm tính khoảng cách từ điểm đến mặt phẳng, mức độ vận dụng – vận dụng cao (VD – VDC), có đáp án và lời giải chi tiết.

Nguồn: toanmath.com

Đọc Sách

Toàn tập thể tích khối đa diện cơ bản
Tài liệu gồm 34 trang, được biên soạn bởi thầy giáo Lương Tuấn Đức (Giang Sơn), tuyển tập hệ thống bài tập trắc nghiệm chuyên đề thể tích khối đa diện cơ bản lớp 12 THPT. Cơ bản thể tích khối chóp (phần 1). Cơ bản thể tích khối chóp (phần 2). Cơ bản thể tích khối chóp (phần 3). Cơ bản thể tích khối chóp (phần 4). Cơ bản thể tích khối chóp (phần 5). Cơ bản thể tích khối chóp (phần 6). Cơ bản thể tích khối chóp (phần 7). Cơ bản thể tích khối chóp (phần 8). Cơ bản thể tích khối chóp (phần 9). Cơ bản thể tích khối lăng trụ (phần 1). Cơ bản thể tích khối lăng trụ (phần 2). Cơ bản thể tích khối lăng trụ (phần 3). Cơ bản thể tích khối lăng trụ (phần 4). Cơ bản thể tích khối lăng trụ (phần 5). Cơ bản thể tích khối lăng trụ (phần 6). Cơ bản thể tích khối lăng trụ (phần 7). Cơ bản thể tích khối lăng trụ (phần 8).
Một số bài toán cực trị hình học trong không gian
Tài liệu gồm 53 trang, được biên soạn bởi thầy giáo Phạm Văn Nghiệp, tuyển chọn một số bài toán cực trị hình học trong không gian có đáp án và lời giải chi tiết; tài liệu hỗ trợ học sinh lớp 12 trong quá trình học thêm chương trình Toán 12 phần Hình học chương 1: Khối đa diện và thể tích của chúng. Trích dẫn tài liệu một số bài toán cực trị hình học trong không gian: +  Một khối gỗ hình hộp chữ nhật có kích thước thoả mãn: Tổng của chiều dài và chiều rộng bằng 12 cm; tổng của chiều rộng và chiều cao là 24 cm. Hỏi thể tích lớn nhất mà khối hộp có thể đạt được là bao nhiêu? + Trong không gian cho bốn mặt cầu có bán kính lần lượt là 2; 3; 3; 2 đôi một tiếp xúc nhau. Mặt cầu nhỏ tiếp xúc ngoài với cả bốn mặt cầu nói trên có bán kính bằng? + Cho hình chóp S ABC có SA ABC SB a 2 hai mặt phẳng SAB và SBC vuông góc với nhau. Góc giữa SC và SAB bằng 0 45 góc giữa SB và mặt đáy bằng 0 0 90. Xác định để thể tích khối chóp S ABC đạt giá trị lớn nhất. + Cho hình chóp S ABC có SA ABC SB a 2 hai mặt phẳng SAB và SBC vuông góc với nhau. Góc giữa SC và SAB bằng 45o góc giữa SB và mặt đáy bằng 0 90 o o. Xác định để thể tích khối chóp S ABC lớn nhất. + Cho hình chóp S ABCD có đáy ABCD là hình thang cân đáy AB nội tiếp đường tròn tâm O bán kính R. Biết rằng AC BD tại I đồng thời I là hình chiếu của S lên ABCD và SAC vuông tại S. Thể tích lớn nhất của khối chóp S ABCD theo R là?
Chuyên đề khối đa diện và thể tích khối đa diện - Nguyễn Hoàng Việt
Tài liệu gồm 150 trang, được biên soạn bởi thầy giáo Nguyễn Hoàng Việt, tổng hợp kiến thức cần nhớ, ví dụ minh họa và bài tập trắc nghiệm chuyên đề khối đa diện và thể tích khối đa diện (Toán 12 phần Hình học chương 1). Chương 1 . KHỐI ĐA DIỆN VÀ THỂ TÍCH KHỐI ĐA DIỆN 2. §1 – KHÁI NIỆM VỀ KHỐI ĐA DIỆN 2. A KIẾN THỨC CẦN NHỚ 2. B BÀI TẬP TRẮC NGHIỆM 2. + Dạng 1. Nhận biết hình đa diện 2. + Dạng 2. Đếm số cạnh, số mặt của một hình đa diện 4. + Dạng 3. Phân chia, lắp ghép khối đa diện 5. §2 – KHỐI ĐA DIỆN LỒI VÀ KHỐI ĐA DIỆN ĐỀU 8. A KIẾN THỨC CẦN NHỚ 8. B BÀI TẬP TRẮC NGHIỆM 11. + Dạng 1. Nhận biết khối đa diện lồi, khối đa diện đều 11. + Dạng 2. Số mặt phẳng đối xứng của hình đa diện 14. §3 – THỂ TÍCH KHỐI CHÓP 18. A LÝ THUYẾT CẦN NHỚ 18. B MỘT SỐ VÍ DỤ MINH HỌA 20. + Dạng 1. Khối chóp có cạnh bên vuông góc với đáy 20. + Dạng 2. Thể tích khối chóp có mặt bên vuông góc với đáy 47. + Dạng 3. Khối chóp có hai mặt phẳng chứa đỉnh cùng vuông góc với đáy 48. + Dạng 4. Khối chóp đều 56. + Dạng 5. Khối chóp biết hình chiếu của đỉnh xuống mặt đáy 70. C BÀI TẬP TRẮC NGHIỆM 71. §4 – THỂ TÍCH KHỐI LĂNG TRỤ 83. A LÝ THUYẾT CẦN NHỚ 83. B MỘT SỐ VÍ VỤ MINH HỌA 83. + Dạng 1. Khối lăng trụ đứng tam giác 83. + Dạng 2. Khối lăng trụ đứng tứ giác 85. + Dạng 3. Khối lăng trụ xiên 87. C BÀI TẬP TRẮC NGHIỆM 89. §5 – PHÂN CHIA KHỐI ĐA DIỆN, TỈ SỐ THỂ TÍCH 104. A LÝ THUYẾT CẦN NHỚ 104. B MỘT SỐ VÍ DỤ MINH HỌA 105. + Dạng 1. Tỉ số thể tích trong khối chóp 105. + Dạng 2. Tỉ số thể tích trong khối lăng trụ 108. C BÀI TẬP TRẮC NGHIỆM 112. §6 – MỘT SỐ ĐỀ ÔN TẬP 122. A ĐỀ ÔN SỐ 1 122. B ĐỀ ÔN SỐ 2 130. C ĐỀ ÔN SỐ 3 138.
Chuyên đề khối đa diện và thể tích khối đa diện - Phạm Hùng Hải
Tài liệu gồm 129 trang, được biên soạn bởi thầy giáo Phạm Hùng Hải, trình bày kiến thức cần nhớ, phân dạng và bài tập trắc nghiệm chuyên đề khối đa diện và thể tích khối đa diện, giúp học sinh lớp 12 rèn luyện khi học chương trình Toán 12 phần Hình học chương 1; các bài tập trong tài liệu được chọn lọc từ các đề thi thử THPT môn Toán của các trường THPT chuyên trên cả nước. Chương 1. KHỐI ĐA DIỆN VÀ THỂ TÍCH KHỐI ĐA DIỆN 1. §1 – KHÁI NIỆM VỀ KHỐI ĐA DIỆN 1. A KIẾN THỨC CẦN NHỚ 1. B BÀI TẬP TRẮC NGHIỆM 1. + Dạng 1.1: Nhận biết hình đa diện 1. + Dạng 1.2: Đếm số cạnh, số mặt của một hình đa diện 2. + Dạng 1.3: Phân chia, lắp ghép khối đa diện 3. §2 – KHỐI ĐA DIỆN LỒI VÀ KHỐI ĐA DIỆN ĐỀU 5. A KIẾN THỨC CẦN NHỚ 5. B BÀI TẬP TRẮC NGHIỆM 9. + Dạng 2.4: Nhận biết khối đa diện lồi, khối đa diện đều 9. + Dạng 2.5: Số mặt phẳng đối xứng của hình đa diện 10. §3 – THỂ TÍCH KHỐI CHÓP 12. A LÝ THUYẾT CẦN NHỚ 12. B MỘT SỐ VÍ DỤ MINH HỌA 15. + Dạng 3.6: Khối chóp có cạnh bên vuông góc với đáy 15. + Dạng 3.7: Thể tích khối chóp có mặt bên vuông góc với đáy 53. + Dạng 3.8: Khối chóp có hai mặt phẳng chứa đỉnh cùng vuông góc với đáy 54. + Dạng 3.9: Khối chóp đều 66. + Dạng 3.10: Khối chóp biết hình chiếu của đỉnh xuống mặt đáy 84. C BÀI TẬP TRẮC NGHIỆM 86. §4 – THỂ TÍCH KHỐI LĂNG TRỤ 90. A LÝ THUYẾT CẦN NHỚ 90. B MỘT SỐ VÍ VỤ MINH HỌA 90. + Dạng 4.11: Khối lăng trụ đứng tam giác 90. + Dạng 4.12: Khối lăng trụ đứng tứ giác 93. + Dạng 4.13: Khối lăng trụ xiên 96. C BÀI TẬP TRẮC NGHIỆM 99. §5 – PHÂN CHIA KHỐI ĐA DIỆN, TỈ SỐ THỂ TÍCH 104. A LÝ THUYẾT CẦN NHỚ 104. B MỘT SỐ VÍ DỤ MINH HỌA 105. + Dạng 5.14: Tỉ số thể tích trong khối chóp 105. + Dạng 5.15: Tỉ số thể tích trong khối lăng trụ 110. C BÀI TẬP TRẮC NGHIỆM 115. §6 – MỘT SỐ ĐỀ ÔN TẬP 119. A ĐỀ ÔN SỐ 1 119. B ĐỀ ÔN SỐ 2 121. C ĐỀ ÔN SỐ 3 124.