Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề học sinh giỏi cấp tỉnh lớp 9 môn Toán năm 2022 2023 sở GD ĐT Hà Nam

Nội dung Đề học sinh giỏi cấp tỉnh lớp 9 môn Toán năm 2022 2023 sở GD ĐT Hà Nam Bản PDF - Nội dung bài viết Sytu giới thiệu Đề học sinh giỏi cấp tỉnh lớp 9 môn Toán năm 2022 - 2023 sở GD ĐT Hà Nam Sytu giới thiệu Đề học sinh giỏi cấp tỉnh lớp 9 môn Toán năm 2022 - 2023 sở GD ĐT Hà Nam Sytu xin gửi đến quý thầy cô và các em học sinh lớp 9 đề thi chọn học sinh giỏi cấp tỉnh môn Toán lớp 9 THCS năm học 2022 - 2023 của sở Giáo dục và Đào tạo UBND tỉnh Hà Nam. Đề thi sẽ được thi hình thức tự luận với 06 bài toán, thời gian làm bài 150 phút. Đề thi sẽ đi kèm đáp án, lời giải chi tiết và bảng hướng dẫn chấm điểm để giúp các em tự kiểm tra và tự đánh giá kết quả của mình. Dưới đây là một số câu hỏi mẫu trong Đề học sinh giỏi cấp tỉnh Toán lớp 9 năm 2022 - 2023 của sở GD&ĐT Hà Nam: 1. Cho parabol P : y = x^2 và hai điểm A(2,4) và B(8,8) nằm trên đồ thị của P. Gọi M là điểm thay đổi trên P và có hoành độ là m. Tìm giá trị của m để diện tích tam giác ABM là lớn nhất. 2. Cho đường tròn (O;R) có đường kính AB. Gọi C là điểm sao cho tam giác ABC là nhọn. Các đường thẳng CA, CB cắt đường tròn (O) tại các điểm D, E. Trên cung AB không chứa D, lấy điểm F sao cho 0 < FA < FB. Đường thẳng CF cắt AB tại M, cắt đường tròn O tại N (N khác F) và cắt đườn tròn (O') tại P (P khác C). Hỏi: (a) Khi 0 < ACB = 60 độ, tính độ dài DE theo R. (b) Chứng minh rằng CN/CF = CP/CM. (c) Gọi I, H lần lượt là hình chiếu vuông góc của F lên BD, AB. Các đường thẳng IH và CD cắt nhau tại K. Tìm vị trí của điểm F để biểu thức AB/BD + AD/FH + FI/FK đạt giá trị nhỏ nhất. 3. Cho góc xOy nhọn và A là điểm cố định trên Ox. Đường tròn (I) tiếp xúc với Ox, Oy tại E, D. Gọi AF là tiếp tuyến thứ 2 từ A đến đường tròn (I) (F là tiếp điểm). Chứng minh rằng đường thẳng DF luôn đi qua một điểm cố định. File WORD chuẩn bị cho quý thầy cô có thể tải về để sử dụng. Hy vọng rằng Đề thi sẽ giúp các em ôn tập và nắm vững kiến thức, chuẩn bị tốt cho kỳ thi sắp tới. Chúc các em thành công!

Nguồn: sytu.vn

Đọc Sách

Đề thi chọn HSG Toán 9 vòng 1 năm 2019 - 2020 phòng GDĐT Thường Tín - Hà Nội
Ngày … tháng 10 năm 2019, phòng Giáo dục và Đào tạo UBND huyện Thường Tín, thành phố Hà Nội tổ chức kỳ thi chọn học sinh giỏi lớp 9 vòng 1 môn Toán năm học 2019 – 2020. Đề thi chọn HSG Toán 9 vòng 1 năm học 2019 – 2020 phòng GD&ĐT Thường Tín – Hà Nội gồm 01 trang với 05 bài toán tự luận, thời gian làm bài 120 phút. Trích dẫn đề thi chọn HSG Toán 9 vòng 1 năm 2019 – 2020 phòng GD&ĐT Thường Tín – Hà Nội : + Cho hai đường tròn (O;R) và đường tròn (O’;R/2) tiếp xúc ngoài nhau tại A. Trên đường tròn (O) lấy điểm B sao cho AB = R và điểm M trên cung lớn AB. Tia MA cắt đường tròn (O’) tại điểm thứ hai là N. Qua N kẻ đường thẳng song song với AB cắt đường thẳng MB ở Q và cắt đường tròn (O’) ở P. a. Chứng minh: Tam giác OAM đồng dạng với tam giác OAN. b. Tính: NQ theo R. c. Xác định vị trí của M để diện tích tứ giác ABQN đạt giá trị lớn nhất. Tính giá trị lớn nhất theo R. + Cho tam giác ABC và một điểm O nằm trong tam giác đó. Các tia AO, BO, CO cắt các cạnh BC, CA, AB theo thứ tự tại M, N, P. Chứng minh rằng: OA/AM + OB/BN + OC/CP = 2. + Cho hai số dương x, y thỏa mãn điều kiện x^3 + y^3 = x – y. Chứng minh rằng: x + y < 1.
Đề thi học sinh giỏi Toán 9 năm 2019 - 2020 phòng GDĐT Đống Đa - Hà Nội
Ngày 19 tháng 10 năm 2019, phòng Giáo dục và Đào tạo quận Đống Đa, thành phố Hà Nội tổ chức kỳ thi chọn học sinh giỏi quận lớp 9 môn Toán năm học 2019 – 2020. Đề thi học sinh giỏi Toán 9 năm học 2019 – 2020 phòng GD&ĐT Đống Đa – Hà Nội gồm 05 bài toán, thời gian làm bài 120 phút, đề thi có lời giải chi tiết và biểu điểm. Trích dẫn đề thi học sinh giỏi Toán 9 năm 2019 – 2020 phòng GD&ĐT Đống Đa – Hà Nội : + Cho a, b, c là các số thực dương thỏa mãn a > c và b > c. Chứng minh rằng: √c(a – c) + √c(b – c) ≤ √ab. [ads] + Cho hình vuông ABCD. Lấy điểm E thuộc đoạn thẳng BC nhưng không trùng với các điểm B và C. Lấy điểm G sao cho AG vuông góc với AE và điểm H sao cho AH vuông góc với EG, trong đó các điểm G, H thuộc đường thẳng CD. Hai đoạn thẳng EG và AH cắt nhau tại K. 1. Chứng minh rằng tam giác AEG vuông cân. 2. Chứng minh rằng CG.HG = AE^2. 3. Tính số đo của góc CBK. + Cho 1011 số nguyên dương khác nhau không vượt quá 2019. Chứng minh trong các số đã cho có ít nhất hai số mà một số chia hết cho số còn lại.
Đề thi chọn HSG huyện Toán 9 năm 2019 - 2020 phòng GDĐT Quan Sơn - Thanh Hóa
Ngày 09 tháng 10 năm 2019, phòng Giáo dục và Đào tạo huyện Quan Sơn, tỉnh Thanh Hóa tổ chức kỳ thi chọn học sinh giỏi cấp huyện môn Toán 9 năm 2019 – 2020. Đề thi chọn HSG huyện Toán 9 năm 2019 – 2020 phòng GD&ĐT Quan Sơn – Thanh Hóa gồm có 05 bài toán dạng tự luận, thời gian làm bài 150 phút, đề thi gồm có 01 trang. [ads] Trích dẫn đề thi chọn HSG huyện Toán 9 năm 2019 – 2020 phòng GD&ĐT Quan Sơn – Thanh Hóa : + Cho tam giác ABC nhọn, các đường cao AD, BE, CF cắt nhau tại H. Chứng minh rằng: 1. AF.AB = AH.AD = AE.AC. 2. H là tâm đường tròn nội tiếp tam giác DEF. 3. Gọi M, N, P, I, K, Q lần lượt là trung điểm các đoạn thẳng BC, AC, AB, EF, ED, DF. Chứng minh rằng các đường thẳng MI, NQ, PK đồng quy. 4. Gọi độ dài các đoạn thẳng AB, BC, CA lần lượt là a, b, c. Độ dài các đoạn thẳng AD, BE, CF là a’, b’, c’. Tìm giá trị nhỏ nhất của biểu thức: (a + b + c)^2/(a’^2 + b’^2 + c’^2). + Cho hai số dương a, b thỏa mãn: a + b = 1. Tìm giá trị nhỏ nhất của biểu thức: A = 1/ab + 1/(a^2 + b^2). + Tìm các số nguyên x để biểu thức x^4 – x^2 + 2x + 2 là số chính phương.
Đề thi học sinh giỏi Toán 9 năm 2019 - 2020 phòng GDĐT Thị xã Quảng Trị
Đề thi học sinh giỏi Toán 9 THCS năm học 2019 – 2020 phòng Giáo dục và Đào tạo Thị xã Quảng Trị gồm 05 bài toán, đề có thang điểm 20, gồm 01 trang, kỳ thi nhằm tuyển chọn các em học sinh lớp 9 có thành tích học tập môn Toán xuất sắc để tuyên dương, khen thưởng và thành lập đội tuyển học sinh giỏi Toán 9. Trích dẫn đề thi học sinh giỏi Toán 9 năm 2019 – 2020 phòng GD&ĐT Thị xã Quảng Trị : + Cho a, b, c là ba số thực không âm và thỏa mãn a + b + c = 1. Tìm giá trị nhỏ nhất của biểu thức A = √(5a + 4) + √(5b + 4) + √(5c + 4). [ads] + Cho hình vuông ABCD có E nằm trên đường chéo AC sao cho AE = 3EC, F là trung điểm AD. Chứng minh tam giác BEF vuông cân. + Cho tam giác ABC vuông tại A. Gọi H là hình chiếu vuông góc của A trên BC và E, F lần lượt là hình chiếu vuông góc của H trên AB, AC. a) Chứng minh: BE/CF = AB^3/AC^3. a) Ching minn: CFAC: b) Gọi S1, S2 lần lượt là diện tích tam giác ABC và diện tích hình chữ nhật AEHF. Tìm đặc điểm của tam giác ABC để S2/S1 đạt giá trị lớn nhất.