Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Chuyên đề phương pháp tọa độ trong không gian

Tài liệu gồm 86 trang được biên soạn bởi thầy Nguyễn Văn Vinh và thầy Lê Đình Hùng (OMEGA Groups) hướng dẫn giải các dạng toán thường gặp trong chuyên đề phương pháp tọa độ trong không gian (Hình học 12 chương 3). BÀI 1 : HỆ TỌA ĐỘ TRONG KHÔNG GIAN. Hiểu rõ lý thuyết, nắm vững các công thức trong tọa độ không gian cùng với các trường hợp vận dụng của từng công thức. BÀI 2 : PHƯƠNG TRÌNH MẶT PHẲNG. Các dạng toán trong bài này thường yêu cầu viết phương trình mặt phẳng, do vậy ta cần nắm vững các bài toán viết phương trình mặt phẳng kèm theo các điều kiện sau: + Mặt phẳng (α) qua M và song song với (β). + Mặt phẳng (α) đi qua ba điểm A, B, C. + Mặt phẳng (α) đi qua M và vuông góc với đường thẳng d. + Mặt phẳng (α) chứa đường thẳng d và vuông góc với (β). + Mặt phẳng (α) chứa đường thẳng d và song song với đường thẳng d’ (d và d’ chéo nhau). + Mặt phẳng (α) đi qua M và chứa đường thẳng d. + Mặt phẳng (α) chứa 2 đường thẳng cắt nhau d và d’. + Mặt phẳng (α) chứa 2 đường thẳng song song d và d’. + Mặt phẳng (α) là mặt phẳng trung trực của đoạn AB. + Mặt phẳng (α) vuông góc với 2 mặt phẳng (β) và (P) ((β) và (P) cắt nhau). + Mặt phẳng (α) chứa 2 điểm M, N và tạo với (β) 1 góc là φ. [ads] BÀI 3 : PHƯƠNG TRÌNH ĐƯỜNG THẲNG TRONG KHÔNG GIAN. Nắm vững lý thuyết về tính tương đối giữa đường với đường và đường với mặt kèm theo các phương pháp xác định. Thuộc các công thức tính khoảng cách và góc. Các bài tập trong bài này thường yêu cầu viết phương trình đường thẳng, tìm giao điểm hoặc hình chiếu … ta cần nắm vững các dạng toán viết phương trình đường thẳng sau: + Đường thẳng đi qua 2 điểm. + Đường thẳng đi qua 1 điểm và vuông góc với mặt phẳng cho trước. + Đường thẳng đi qua 1 điểm và song song với 1 đường thẳng cho trước. + Đường thẳng đi qua 1 điểm và vuông góc với 2 đường thẳng cho trước. + Đường thẳng vuông góc và cắt đường thẳng d’ và song song với 1 mặt phẳng cho trước. + Đường thẳng đi qua 1 điểm và vuông góc với 1 đường thẳng cho trước. + Đường thẳng đi qua 1 điểm, cắt đường thẳng a và vuông góc với đường thẳng b. + Đường thẳng đi qua 1 điểm và cắt 2 đường thẳng cho trước. + Đường thẳng vuông góc với mặt phẳng (α) và cắt 2 đường thẳng a và b. + Đường thẳng là hình chiếu của d’ lên mặt phẳng (α). + Đường thẳng d qua M (d và M cùng nằm trong (α) và vuông góc với đường thẳng a (a không thuộc (α)). + Đường thẳng là đường vuông góc chung của 2 đường a và a’ cho trước. BÀI 4 : PHƯƠNG TRÌNH MẶT CẦU. Nắm rõ vị trí tương đối giữa mặt cầu với mặt phẳng và mặt cầu với đường thẳng kèm theo các điều kiện xác định. Các bài tập trong bài này đa số yêu cầu viết phương trình mặt cầu, ta cần nắm vững các bài toán viết phương trình mặt cầu sau: + Mặt cầu có tâm I và đi qua điểm A. + Mặt cầu nhận AB làm đường kính. + Mặt cầu đi qua 3 điểm A, B, C và có tâm I(a;b;c) thuộc mặt phẳng (α). + Mặt cầu ngoại tiếp tứ diện ABCD. + Mặt cầu có tâm I và tiếp xúc với mặt phẳng (α). + Mặt cầu có tâm I và cắt mặt phẳng (α) theo giao tuyến là đường tròn có bán kính r. + Mặt cầu có tâm I và tiếp xúc với đường thẳng a. + Mặt cầu có tâm I và tiếp xúc ngoài mặt cầu có tâm I’, bán kính R’. + Mặt cầu có tâm I tiếp xúc trong với mặt cầu có tâm I’, bán kính R’. + Mặt cầu có tâm I cắt đường thẳng a tại A và B, sao cho AB = m. BÀI 5 : CÁC BÀI TOÁN CỰC TRỊ TRONG TỌA ĐỘ KHÔNG GIAN. Ngoài các bài toán thường gặp như viết phương trình mặt phẳng, đường thẳng, mặt cầu, xác định giao điểm, hình chiếu, vị trí tương đối … chuyên đề này còn xuất hiện các bài toán khó liên quan đến chủ đề cực trị. Kể từ khi chuyển hình thức thi toán sang trắc nghiệm, bài toán cực trị xuất hiện ngày càng nhiều và thường có mặt trong các đề thi tuyển sinh nhằm tăng thêm tính phân loại, chọn lọc học sinh khá giỏi cho các trường, các ngành ở tốp cao. Do vậy, đây là dạng toán quan trọng mà các bạn học sinh muốn vô các ngành có điểm cao cần phải nắm được. + Cho các điểm A, B, C … Tìm điểm H thuộc mặt phẳng (α) hoặc đường thẳng d sao cho nó thỏa mãn điều kiện để các biểu thức sau có giá trị lớn nhất hoặc nhỏ nhất. + Cho 2 điểm A và B không thuộc d, tìm điểm M thuộc mặt phẳng (α) sao cho MA + MB đạt giá trị nhỏ nhất. + Cho 2 điểm A và B không thuộc d, tìm điểm M thuộc d sao cho MA + MB đạt giá trị nhỏ nhất. + Cho 2 điểm A và B, viết phương trình mặt phẳng (α) qua B sao cho (α) cách A một khoảng lớn nhất. + Cho điểm A và đường thẳng d không đi qua A, viết phương trình mặt phẳng (α) qua d sao cho (α) cách A một khoảng lớn nhất. + Cho mặt phẳng (α) và điểm B thuộc (α), viết phương trình đường thẳng a chứa trong (α), đi qua B và cách điểm A không thuộc (α) một khoảng lớn nhất và nhỏ nhất. + Cho điểm A thuộc mặt phẳng (α) và đường thẳng d không song song hoặc nằm trên (α), viết phương trình đường thẳng a chứa trong (α) đi qua A và cách d một khoảng lớn nhất. + Cho hai đường thẳng a và b không song song nhau, viết phương trình mặt phẳng (α) chứa a và tạo với b một góc lớn nhất. + Cho điểm A thuộc mặt phẳng (α) và đường thẳng a không song song hoặc nằm trong (α), viết phương trình đường thẳng b chứa trong (α) và qua A sao cho tạo với a một góc lớn nhất và nhỏ nhất.

Nguồn: toanmath.com

Đọc Sách

Tóm tắt lý thuyết và bài tập trắc nghiệm góc và khoảng cách
Sau một khoảng thời gian nghỉ học kéo dài do ảnh hưởng của tình hình dịch bệnh, thì hiện tại, nhiều trường THPT trên toàn quốc đã bắt đầu cho học sinh đi học trở lại. Đây là thời điểm các em học sinh lớp 12 cần ôn tập lại kiến thức để chuẩn bị cho kỳ thi THPT Quốc gia và kỳ thi tuyển sinh vào các trường Cao đẳng – Đại học năm học 2019 – 2020. giới thiệu đến các em tài liệu tóm tắt lý thuyết và bài tập trắc nghiệm góc và khoảng cách, một chủ đề rất quan trọng trong chương trình Hình học 11 chương 3. Bên cạnh tài liệu góc và khoảng cách dạng PDF dành cho học sinh, còn chia sẻ tài liệu WORD (.doc / .docx) nhằm hỗ trợ quý thầy, cô giáo trong công tác giảng dạy. [ads] Khái quát nội dung tài liệu tóm tắt lý thuyết và bài tập trắc nghiệm góc và khoảng cách: A. KIẾN THỨC CƠ BẢN I. GÓC 1. Góc giữa hai mặt phẳng. 2. Góc giữa hai đường thẳng, góc giữa đường thẳng và mặt phẳng. II. KHOẢNG CÁCH 1. Khoảng cách từ một điểm đến mặt phẳng, khoảng cách giữa hai mặt phẳng song song. 2. Khoảng cách từ một điểm đến một đường thẳng – khoảng cách giữa hai đường thẳng. B. KỸ NĂNG CƠ BẢN + Nhớ và vận dụng được công thức tính khoảng cách từ một điểm đến mặt phẳng; biết cách khoảng cách giữa hai mặt phẳng song song. + Nhớ và vận dụng được công thức tính khoảng cách từ một điểm đến một đường thẳng; biết cách tính khoảng cách giữa hai đường thẳng song song; khoảng cách giữa hai đường thẳng chéo nhau; khoảng cách từđường thẳng đến mặt phẳng song song. + Nhớ và vận dụng được công thức góc giữa hai đường thẳng; góc giữa đường thẳng và mặt phẳng; góc giữa hai mặt phẳng. + Áp dụng được góc và khoảng cách vào các bài toán khác. C. BÀI TẬP TRẮC NGHIỆM
Xác định tâm, bán kính, diện tích và thể tích của mặt cầu
Tài liệu gồm 12 trang được biên soạn bởi tập thể quý thầy, cô giáo Nhóm Word Và Biên Soạn Tài Liệu Môn Toán THPT, hướng dẫn giải bài toán xác định tâm, bán kính, diện tích và thể tích của mặt cầu, được phát triển dựa trên câu 14 đề thi minh họa THPT Quốc gia môn Toán năm học 2019 – 2020 do Bộ Giáo dục và Đào tạo công bố. Giới thiệu sơ lược về tài liệu xác định tâm, bán kính, diện tích và thể tích của mặt cầu: A. KIẾN THỨC CẦN NHỚ 1. Phương trình mặt cầu dạng chính tắc Cho mặt cầu có tâm I(a;b;c) có bán kính R. Khi đó phương trình chính tắc của mặt cầu là (S): (x – a)^2 + (y – b)^2 + (z – c)^2 = R^2. 2. Phương trình mặt cầu dạng khai triển Phương trình mặt cầu dạng khai triển là (S): x^2 + y^2 + z^2 – 2ax – 2by – 2cz + d = 0. Khi đó mặt cầu có có tâm I(a;b;c), bán kính R = √(a^2 + b^2 + c^2 – d) với a^2 + b^2 + c^2 – d > 0. B. BÀI TẬP MẪU 1. Đề bài : Trong không gian với hệ trục tọa độ Oxyz, cho mặt cầu: (S): (x + 1)^2 + (y – 2)^2 + (z – 1)^2 = 9. Tìm tọa độ tâm I và tính bán kính R của (S). 2. Phân tích hướng dẫn giải a. Dạng toán: Đây là dạng toán sử dụng tính chất để xác định tâm và bán kính của mặt cầu. b. Hướng giải: + Bước 1: Dựa trên phương trình mặt cầu dạng chính tắc tìm tâm và bán kính của mặt cầu. + Bước 2: Mặt cầu (S): (x – a)^2 + (y – b)^2 + (z – c)^2 = R^2 có tâm I(a;b;c) và bán kính R. C. BÀI TẬP TƯƠNG TỰ VÀ PHÁT TRIỂN (có đáp án và lời giải chi tiết).
Bài toán tìm hình chiếu của điểm trên mặt phẳng tọa độ
Tài liệu gồm 13 trang được biên soạn bởi tập thể quý thầy, cô giáo Nhóm Word Và Biên Soạn Tài Liệu Môn Toán THPT 2020, hướng dẫn giải bài toán tìm hình chiếu của điểm trên mặt phẳng tọa độ, được phát triển dựa trên câu 13 đề thi tham khảo THPT Quốc gia môn Toán năm học 2019 – 2020 do Bộ Giáo dục và Đào tạo công bố. Giới thiệu sơ lược về tài liệu bài toán tìm hình chiếu của điểm trên mặt phẳng tọa độ: 1. Cho điểm M(x;y;z): Hình chiếu của điểm M trên Ox là M1(x;0;0); Hình chiếu của điểm M trên Oy là M2(0;y;0); Hình chiếu của điểm M trên Oz là M3(0;0;z); Hình chiếu của điểm M trên (Oxy) là M4(x;y;0); Hình chiếu của điểm M trên (Oyz) là M5(0;y;z); Hình chiếu của điểm trên (Ozx) là M6(x;0;z). 2. Tìm hình chiếu của điểm A trên mặt phẳng (α). + Viết phương trình đường thẳng d đi qua A và vuông góc với (α). + Hình chiếu H của điểm A là giao điểm của đường thẳng d và (α). [ads] 3. Tìm hình chiếu d’ của đường thẳng d trên mặt phẳng (α). Cách 1 : – Nếu đường thẳng d song song với (α) thì d // d’. + Lấy điểm M thuộc đường thẳng d và tìm hình chiếu M’ của điểm M trên (α). + Đường thẳng d’ đi qua M’ và song song với đường thẳng d. – Nếu đường thẳng d cắt (α) tại M. + Lấy điểm N thuộc đường thẳng d và tìm hình chiếu N’ của N trên (α). + Đường thẳng d’ đi qua hai điểm là M và N’. Cách 2 : + Viết phương trình mặt phẳng (β) chứa đường thẳng d và vuông góc với (α). + Khi đó đường thẳng d’ là giao tuyến của hai mặt phẳng (α) và (β). 4. Tìm hình chiếu A’ của A trên đường thẳng d. Cách 1 : + Viết phương trình mặt phẳng (P) chứa A và vuông góc với d. + Hình chiếu A’ là giao điểm của d và (P). Cách 2 : + Tìm tọa độ điểm A’ theo tham số t (A’ thuộc d). + Lập phương trình AA’.ud = 0. Giải phương trình tìm t suy ra tọa độ điểm A’. 5. Tìm điểm M’ đối xứng với M qua (P). + Tìm hình chiếu H của M trên (P) (khi đó H là trung điểm MM’). + Áp dụng công thức tính tọa độ trung điểm suy ra tọa độ điểm M’.
Viết phương trình mặt cầu
Tài liệu gồm 10 trang được biên soạn bởi tập thể quý thầy, cô giáo Nhóm Word Và Biên Soạn Tài Liệu Môn Toán THPT, hướng dẫn giải bài toán viết phương trình mặt cầu, được phát triển dựa trên câu 33 đề thi minh họa THPT Quốc gia môn Toán năm học 2019 – 2020 do Bộ Giáo dục và Đào tạo công bố. Giới thiệu sơ lược về tài liệu viết phương trình mặt cầu: A. KIẾN THỨC CẦN NẮM 1. Phương trình mặt cầu (S) dạng 1 Để viết phương trình mặt cầu (S), ta cần tìm tâm I(a;b;c) và bán kính R. Khi đó (S) có tâm I(a;b;c) và bán kính R khi và chỉ khi (S): (x – a)^2 + (y – b)^2 + (z – c)^2 = R^2. 2. Phương trình mặt cầu (S) dạng 2 (S): x^2 + y^2 + z^2 – 2ax – 2by – 2cz + d = 0 với a^2 + b^2 + c^2 – d > 0 là phương trình mặt cầu dạng 2 Tâm I(a;b;c) và bán kính: R = √(a^2 + b^2 + c^2 – d) > 0. [ads] B. BÀI TẬP MẪU 1. Bài toán : Trong không gian Oxyz, cho mặt cầu (S) có tâm là điểm I(0;0;-3) và đi qua điểm M(4;0;0). Phương trình của (S) là? 2. Phân tích hướng dẫn giải a. Dạng toán: Đây là dạng toán viết phương trình của mặt cầu. b. Hướng giải: + Bước 1: (S) có tâm I(a;b;c) và bán kính R ⇔ (S): (x – a)^2 + (y – b)^2 + (z – c)^2 = R^2. + Bước 2: R = IM = √[(4 – 0)^2 + (0 – 0)^2 + (0 + 3)^2] = 5. C. BÀI TẬP TƯƠNG TỰ VÀ PHÁT TRIỂN