Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề khảo sát Toán 10 lần 2 năm 2022 - 2023 trường THPT Quảng Xương 2 - Thanh Hóa

giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 10 đề khảo sát ôn tập môn Toán 10 lần 2 năm học 2022 – 2023 trường THPT Quảng Xương 2, tỉnh Thanh Hóa (mã đề 101 + 102); đề thi hình thức 100% trắc nghiệm với 50 câu hỏi và bài toán, thời gian làm bài 90 phút (không kể thời gian phát đề); đề thi có đáp án và lời giải chi tiết các câu mức độ vận dụng, vận dụng cao. Trích dẫn Đề khảo sát Toán 10 lần 2 năm 2022 – 2023 trường THPT Quảng Xương 2 – Thanh Hóa : + Một gia đình cần ít nhất 900 đơn vị protein và 400 đơn vị lipit trong thức ăn mỗi ngày. Mỗi kilogam thịt bò chứa 800 đơn vị protein và 200 đơn vị lipit. Mỗi kilogam thịt lợn chứa 600 đơn vị protein và 400 đơn vị lipit. Biết rằng gia đình này chỉ mua nhiều nhất 1,6 kg thịt bò và 1,1 kg thịt lợn. Giá tiền một kg thịt bò là 160 nghìn đồng, 1 kg thịt lợn là 110 nghìn đồng. Gọi x y, lần lượt là số kg thịt bò và thịt lợn mà gia đình đó cần mua để tổng số tiền họ phải trả là ít nhất mà vẫn đảm bảo lượng protein và lipit trong thức ăn. Tính 2 2 x y. + Hai bạn An và Bình bàn về cách đo chiều cao h của một cái tháp Chăm Chiên Đàn tại huyện Phú Ninh tỉnh Quảng Nam. An nói: Tớ đọc ở một tài liệu toán học thấy nói rằng tháp Chăm Chiên Đàn ở Tỉnh Quảng Nam (Hình bên dưới) có dạng hình tháp thẳng đứng và nếu để đo được chiều cao của tháp mà không phải đo từ đỉnh của tháp đo xuống chân tháp. Người ta giả sử lấy bốn điểm ABCD với ba điểm ABC thẳng hàng và A nằm giữa B và C D là đỉnh của tháp sao cho AB m = 30, CAD CBD 45, 30 và CD chính là chiều cao h của tháp cần xác định.Dựa vào thông tin mà An đọc được, em hãy giúp hai bạn tính chiều cao của cổng của tháp Chăm Chiên Đàn là bao nhiêu mét nhé! + Lớp 10A có 45 học sinh trong đó có 25 em học giỏi môn Toán, 23 em học giỏi môn Lý, 20 em học giỏi môn Hóa, 11 em học giỏi cả môn Toán và môn Lý, 8 em học giỏi cả môn Lý và môn Hóa, 9 em học giỏi cả môn Toán và môn Hóa. Hỏi lớp 10A có bao nhiêu bạn học giỏi cả ba môn Toán, Lý, Hóa, biết rằng mỗi học sinh trong lớp học giỏi ít nhất một trong 3 môn Toán, Lý, Hóa?

Nguồn: toanmath.com

Đọc Sách

Đề kiểm định Toán 10 lần 2 năm 2020 - 2021 trường THPT Yên Phong 2 - Bắc Ninh
Thứ Bảy ngày 24 tháng 04 năm 2021, trường THPT Yên Phong số 2, tỉnh Bắc Ninh tổ chức kỳ thi kiểm định chất lượng môn Toán lớp 10 năm học 2020 – 2021 lần thứ hai. Đề kiểm định Toán 10 lần 2 năm 2020 – 2021 trường THPT Yên Phong 2 – Bắc Ninh được biên soạn theo hình thức đề 30% trắc nghiệm + 70% tự luận, thời gian làm bài 90 phút, đề thi có đáp án và lời giải chi tiết. Trích dẫn đề kiểm định Toán 10 lần 2 năm 2020 – 2021 trường THPT Yên Phong 2 – Bắc Ninh : + Trong mặt phẳng Oxy, cho ba điểm. a) Viết phương trình tổng quát của đường thẳng ∆ đi qua trung điểm I của AB và vuông góc với BC. b) Tìm giao điểm của đường thẳng ∆ với các trục tọa độ. c) Tìm điểm M thuộc ∆ và cách đều hai điểm A C. + Cho các số thực a b c sao cho tồn tại tam giác có độ dài ba cạnh là a b c và chu vi bằng 2 (cùng đơn vị đo). Chứng minh rằng. + Hình vẽ sau đây là đồ thị của hàm số nào trong bốn hàm số cho ở các đáp án A, B, C, D?
Đề kiểm tra Toán 10 lần 2 năm 2020 - 2021 trường Hàn Thuyên - Bắc Ninh
Đề kiểm tra Toán 10 lần 2 năm học 2020 – 2021 trường THPT Hàn Thuyên, tỉnh Bắc Ninh gồm 05 trang với 50 câu trắc nghiệm, thời gian học sinh làm bài thi là 90 phút, đề thi có đáp án mã đề 132, 209, 357, 485, 570, 628, 743, 896. Trích dẫn đề kiểm tra Toán 10 lần 2 năm 2020 – 2021 trường Hàn Thuyên – Bắc Ninh : + Cổng vào thành phố X có hình dạng xem như một Parabol (hình vẽ). Trên thành cổng, tại vị trí cao 45m so với mặt đất (tại điểm M thuộc cung AB), người ta thả một sợi dây chạm đất (dây căng thẳng theo phương vuông góc với mặt đất), vị trí chạm mặt đất của đầu sợi dây cách chân cổng đoạn 10m. Xác định chiều cao của cổng tính từ mặt đất đến điểm cao nhất của cổng. + Trong hệ trục tọa độ Oxy, cho u(3;2), v(0;1). Tập hợp điểm M thoả mãn khi m thay đổi là: A. Đường thẳng có phương trình (d): x 3y 3 0. B. đường thẳng có phương trình (d): 3x y 1 0. C. đường thẳng có phương trình (d): 2x 3y 0. D. đường thẳng có phương trình (d): y 0. + Trong hệ trục tọa độ Oxy, cho đường thẳng (d) có phương trình: x y 1 2 3. Khi đó, số mệnh đề đúng trong các mệnh đề dưới đây là: 1) (d) có một véc tơ pháp tuyến là n(2;3). 2) (d) cắt trục Ox tại điểm A(2;0). 3) (d) cắt trục Oy tại điểm B(0;3). 4) (d) có một véc tơ pháp tuyến là (6;4).
Đề khảo sát Toán 10 lần 1 năm 2020 - 2021 trường Tiên Du 1 - Bắc Ninh
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 10 đề khảo sát chất lượng Toán 10 lần 1 năm học 2020 – 2021 trường THPT Tiên Du số 1, tỉnh Bắc Ninh; đề được biên soạn theo hình thức đề 50% trắc nghiệm + 50% tự luận, thời gian làm bài 90 phút. Trích dẫn đề khảo sát Toán 10 lần 1 năm 2020 – 2021 trường Tiên Du 1 – Bắc Ninh : + Với H, K là các mệnh đề và có một định lý được phát biểu dưới dạng “Nếu H thì K”. Khẳng định nào sau đây là đúng? A. H là điều kiện cần để có K. B. K không là điều kiện cần để có H. C. K là điều kiện đủ để có H. D. H là điều kiện đủ để có K. + Cho hình vuông ABCD có cạnh bằng a. Gọi điểm M là trung điểm của cạnh AB. Gọi điểm N thỏa mãn AN = 3/4.AC. Chứng minh rằng: MN.ND = 0. + Cho phương trình 3√(x2 – 2x + 3) = x2 – 2x + m với tham số m thuộc R. Tìm tất cả các giá trị của tham số m để phương trình đã cho có đúng hai nghiệm phân biệt thuộc đoạn [0;3].
Đề kiểm tra Toán 10 lần 1 năm 2020 - 2021 trường THPT Lý Thái Tổ - Bắc Ninh
Đề kiểm tra chất lượng Toán 10 lần 1 năm học 2020 – 2021 trường THPT Lý Thái Tổ – Bắc Ninh gồm 01 trang với 07 câu tự luận, thời gian làm bài 90 phút, kỳ thi được diễn ra vào Chủ Nhật ngày 17 tháng 01 năm 2021, đề thi có lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn đề kiểm tra Toán 10 lần 1 năm 2020 – 2021 trường THPT Lý Thái Tổ – Bắc Ninh : + Một người cần phải làm cái cửa sổ mà phía trên là hình bán nguyệt, phía dưới là hình chữ nhật, có chu vi là 8 ( là chu vi hình bán nguyệt cộng với chu vi hình chữ nhật trừ đi độ dài cạnh hình chữ nhật là đường kính của hình bán nguyệt). Hãy xác định các kích thước của của hình chữ nhật để diện tích cửa sổ là lớn nhất. + Tìm tập xác định của các hàm số sau. + Trong mặt phẳng với hệ trục tọa độ Oxy, cho ba điểm A(1;-1), B(3;2), C(1;-4). 1) Chứng minh A, B, C là ba đỉnh của một tam giác. Tính độ dài trung tuyến AM của tam giác ABC. 2) Tìm tọa độ trực tâm H của tam giác ABC.