Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Tài liệu Toán 9 chủ đề góc tạo bởi tia tiếp tuyến và dây cung

Tài liệu gồm 11 trang, bao gồm kiến thức cần nhớ, các dạng toán và bài tập chủ đề góc tạo bởi tia tiếp tuyến và dây cung trong chương trình môn Toán 9, có đáp án và lời giải chi tiết. A. Lý thuyết. 1. Định nghĩa: + Góc BAx có đỉnh nằm trên đường tròn cạnh Ax là một tia tiếp tuyến còn cạnh AB chứa dây cung AB, góc BAx gọi là góc tạo bởi tiếp tuyến và dây cung. + AnB gọi là cung bị chắn. 2. Định lý: Số đo của góc tạo bởi tia tiếp tuyến và dây cung bằng nửa số đo cung bị chắn. 3. Hệ quả: Trong một đường tròn, góc tạo bởi tia tiếp tuyến và dây cung và góc nội tiếp cùng chắn một cung thì bằng nhau. 4. Định lý bổ sung (Bổ đề): Nếu góc BAx (với đỉnh A nằm trên đường tròn, một cạnh chứa dây cung AB) có số đo bằng nửa số đo của cung AB căng dây đó và cung này nằm bên trong gó đó thì cạnh Ax là một tia tiếp tuyến của đường tròn. B. Bài tập. Dạng 1 : Chứng minh đẳng thức, các góc bằng nhau. Cách giải: Ta áp dụng các kiến thức sau: – Góc tạo bởi tia tiếp tuyến và dây cung và góc nội tiếp cùng chắn một cung thì bằng nhau. – Hai góc kề đáy của tam giác cân thì bằng nhau. – Hai tam giác có hai cặp góc bằng nhau thì cặp góc còn lại cũng bằng nhau. Dạng 2 : Chứng minh hai đường thẳng song song, hai đường thẳng vuông góc, một tia là tiếp tuyến của đường tròn. Cách giải: Sử dụng hệ quả về góc tạo bởi tia tiếp tuyến và dây cung hoặc hệ quả của hia góc nội tiếp.

Nguồn: toanmath.com

Đọc Sách

Một kỹ năng khi sử dụng phương pháp đặt ẩn phụ giải phương trình - hệ phương trình
Tài liệu gồm 05 trang, được biên soạn bởi thầy giáo Vũ Hồng Phong (giáo viên Toán trường THPT Tiên Du 1, huyện Tiên Du, tỉnh Bắc Ninh), hướng dẫn một kỹ năng khi sử dụng phương pháp đặt ẩn phụ giải phương trình – hệ phương trình. 1. KIẾN THỨC CẦN NHỚ. Một điều quan trọng giúp chúng ta giải được một phương trình (PT) hay hệ phương trình bằng cách đặt ẩn phụ đó là phát hiện được các mối liên hệ giữa các ẩn với nhau. Mối liên hệ này gồm có: + Mối liên hệ giữa các ẩn mới. + Mối liên hệ giữa các ẩn cũ. + Mối liên hệ giữa các ẩn mới với các ẩn cũ. Mối liên hệ giữa các ẩn được thể hiện dưới dạng các đẳng thức hoặc bất đẳng thức. 2. VÍ DỤ MINH HỌA. 3. BÀI TẬP ĐỀ NGHỊ.
Chuyên đề toán thực tế môn Toán 9 - Nguyễn Ngọc Dũng
Tài liệu gồm 52 trang, được biên soạn bởi thầy giáo Nguyễn Ngọc Dũng, phân dạng và tuyển chọn các bài toán thực tế môn Toán 9. MỤC LỤC : Bài số 1. Định lý Vi-ét và ứng dụng 1. Bài số 2. Kỹ năng làm toán thực tế “Hàm số và đồ thị” 2. Bài số 3. Giải toán bằng cách lập phương trình, hệ phương trình 15. Bài số 4. Các bài toán thực tế liên quan “Hình không gian” 24. Bài số 5. Các bài toán thực tế liên quan “Hình học phẳng” 38.