Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề học sinh giỏi Toán 9 năm 2022 - 2023 trường THCS Phú Thái - Hải Dương

THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề khảo sát chất lượng học sinh giỏi môn Toán 9 năm học 2022 – 2023 trường THCS Phú Thái, huyện Kim Thành, tỉnh Hải Dương. Trích dẫn đề học sinh giỏi Toán 9 năm 2022 – 2023 trường THCS Phú Thái – Hải Dương : + Cho a, b là các số nguyên thỏa mãn 2a2 + 3ab + 2b2 chia hết cho 7. Chứng minh rằng a2 – b2 chia hết cho 7. + Tìm nghiệm nguyên của phương trình: 5×2 + 5y2 + 6xy – 20x – 20y + 24 = 0. + Cho đường tròn (O;R) đường kính BC, A là điểm chuyển động trên đường tròn (O;R). H là hình chiếu vuông góc của điểm A trên BC. Gọi (Q;r); (I;r1); (K;r2) là các đường tròn nội tiếp tam giác ABC; tam giác AHB, tam giác AHC. Đường thẳng KI cắt AB và AC lần lượt tại M và N. a) Chứng minh rằng tam giác AMN vuông cân. b) Tính r + r1 + r2 theo R trong trường hợp H là trung điểm của OB. c) Gọi E là giao điểm AI và BC, F là giao điểm của AK và BC. Xác định vị trí của A để diện tích tam giác AEF đạt giá trị lớn nhất.

Nguồn: toanmath.com

Đọc Sách

Đề học sinh giỏi Toán 9 năm 2021 - 2022 phòng GDĐT thành phố Bắc Ninh
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi môn Toán 9 năm học 2021 – 2022 phòng Giáo dục và Đào tạo UBND thành phố Bắc Ninh, tỉnh Bắc Ninh. Trích dẫn đề học sinh giỏi Toán 9 năm 2021 – 2022 phòng GD&ĐT thành phố Bắc Ninh : + Tìm tất cả các số nguyên dương n sao cho mỗi số n 26 và n 11 đều là các lập phương của một số nguyên dương. + Cho tam giác nhọn ABC nội tiếp đường tròn O R có B C cố định. Các đường cao AD BE CF của tam giác ABC đồng quy tại H. Đường thẳng chứa tia phân giác ngoài của BHC cắt AB AC lần lượt tại M N. a) Chứng minh rằng tam giác AMN cân. b) Chứng minh OA vuông góc với EF AD BC DE EF FD R. c) Đường tròn ngoại tiếp tam giác AMN cắt đường phân giác của BAC tại K K A. Chứng minh rằng HK luôn đi qua một điểm cố định khi A thay đổi. + Cho mỗi điểm trên mặt phẳng được tô bằng một trong hai màu xanh, đỏ. Chứng minh rằng tồn tại một tam giác mà ba đỉnh và trọng tâm cùng màu.
Đề học sinh giỏi Toán 9 năm 2021 - 2022 phòng GDĐT Thanh Trì - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi cấp huyện môn Toán lớp 9 năm học 2021 – 2022 phòng Giáo dục và Đào tạo UBND huyện Thanh Trì, thành phố Hà Nội; kỳ thi được diễn ra vào thứ Năm ngày 10 tháng 02 năm 2022.
Đề chọn đội tuyển Toán 9 năm 2021 - 2022 trường chuyên Hà Nội - Amsterdam
Thứ Năm ngày 10 tháng 02 năm 2022, trường THPT chuyên Hà Nội – Amsterdam tổ chức kì thi kiểm tra chọn đội tuyển học sinh giỏi môn Toán lớp 9 năm học 2021 – 2022 (vòng thi thứ nhất). Đề chọn đội tuyển Toán 9 năm 2021 – 2022 trường chuyên Hà Nội – Amsterdam gồm 01 trang với 05 bài toán dạng tự luận, thời gian học sinh làm bài thi là 150 phút (không kể thời gian phát đề).
Đề học sinh giỏi Toán THCS năm 2021 - 2022 phòng GDĐT thành phố Hưng Yên
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi Toán THCS cấp thành phố năm học 2021 – 2022 phòng GD&ĐT thành phố Hưng Yên, tỉnh Hưng Yên; kỳ thi được diễn ra vào ngày 20 tháng 01 năm 2022.