Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề minh họa Toán tuyển sinh năm 2020 2021 sở GD ĐT Khánh Hòa

Nội dung Đề minh họa Toán tuyển sinh năm 2020 2021 sở GD ĐT Khánh Hòa Bản PDF - Nội dung bài viết Đề minh họa Toán tuyển sinh năm 2020-2021 của sở GD&ĐT Khánh Hòa Đề minh họa Toán tuyển sinh năm 2020-2021 của sở GD&ĐT Khánh Hòa Trong kỳ tuyển sinh vào lớp 10 năm học 2020 - 2021, sở Giáo dục và Đào tạo tỉnh Khánh Hòa đã công bố đề minh họa môn Toán nhằm giúp học sinh làm quen với cấu trúc và hình thức ra đề. Đề thi bao gồm 05 bài toán dạng tự luận, thời gian làm bài là 120 phút. Một trong những bài toán trong đề thi được trích dẫn như sau: + Hai thanh niên chuẩn bị cho một xe hàng từ thiện chống dịch COVID-19. Người thứ nhất chuyển một nửa số lượng thực phẩm, sau đó người thứ hai chuyển hết số còn lại lên xe, thời gian người thứ hai hoàn thành lâu hơn người thứ nhất 1 giờ. Nếu cả hai làm chung, thời gian chuyển hết số lượng thực phẩm lên xe là 4/3 giờ. Hỏi mỗi người chuyển hết số lượng thực phẩm đó lên xe trong thời gian bao lâu nếu làm riêng? Bên cạnh đó, đề thi còn có các bài toán khác với nhiều yêu cầu khác nhau, từ việc chứng minh tính chất đồ thị đến giải phương trình và tính toán biểu thức phức tạp. Đây là cơ hội để học sinh thực hành và rèn luyện kỹ năng giải quyết vấn đề, suy luận logic và tính toán chính xác. Đề minh họa Toán tuyển sinh năm 2020-2021 của sở GD&ĐT Khánh Hòa không chỉ đơn thuần là bài thi mà còn là cơ hội để học sinh thể hiện khả năng và kiến thức của mình trong môn Toán.

Nguồn: sytu.vn

Đọc Sách

Đề tuyển sinh lớp 10 THPT môn Toán năm 2022 - 2023 sở GDĐT Hải Dương
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chính thức kỳ thi tuyển sinh vào lớp 10 THPT môn Toán năm học 2022 – 2023 sở Giáo dục và Đào tạo tỉnh Hải Dương; kỳ thi được diễn ra vào thứ Ba ngày 07 tháng 06 năm 2022.
Đề tuyển sinh lớp 10 môn Toán (chuyên) năm 2022 - 2023 trường chuyên Bến Tre
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chính thức kỳ thi tuyển sinh vào lớp 10 môn Toán (chuyên) năm học 2022 – 2023 trường THPT chuyên Bến Tre, tỉnh Bến Tre; đề thi gồm 01 trang với 07 bài toán dạng tự luận, thời gian học sinh làm bài thi là 150 phút (không kể thời gian phát đề); kỳ thi được diễn ra vào thứ Ba ngày 07 tháng 06 năm 2022.
Đề tuyển sinh lớp 10 môn Toán năm 2022 - 2023 trường THPT chuyên Hà Tĩnh
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chính thức kỳ thi tuyển sinh vào lớp 10 môn Toán năm học 2022 – 2023 trường THPT chuyên Hà Tĩnh; kỳ thi được diễn ra vào thứ Ba ngày 07 tháng 06 năm 2022. Trích dẫn đề tuyển sinh lớp 10 môn Toán năm 2022 – 2023 trường THPT chuyên Hà Tĩnh : + Cho hai đường tròn (O) và (O’) cắt nhau tại hai điểm phân biệt A và B. Trên tia đối của tia AB lấy điểm M, kẻ các tiếp tuyến ME, MF với đường tròn (O’), trong đó E và F thuộc đường tròn (O’), F nằm trong đường tròn (O). Hai đường thẳng AE và AF cắt đường tròn (O) lần lượt tại P và Q (P và Q khác A). Tia EF cắt PQ tại K. a) Chứng minh tam giác BKP đồng dạng với tam giác BFA. b) Gọi I và J lần lượt là giao điểm của AB với OO’ và EF. Chứng minh IJE = IFM. c) Chứng minh PQ = 2OA2 – OK2. + Cho các số thực dương a b c thỏa mãn a + b + c = 3abc. Tìm giá trị lớn nhất của biểu thức P. + Lớp 9A có 34 học sinh, các học sinh lớp này đều tham gia một số câu lạc bộ của trường. Mỗi học sinh của lớp tham gia đúng một câu lạc bộ. Nếu chọn ra 10 học sinh bất kì của lớp này thì luôn có ít nhất 3 học sinh tham gia cùng một câu lạc bộ. Chứng minh rằng có một câu lạc bộ gồm ít nhất 9 học sinh lớp 9A tham gia.
Đề vào lớp 10 môn Toán (chuyên) năm 2022 - 2023 trường chuyên Hạ Long - Quảng Ninh
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi tuyển sinh vào lớp 10 THPT môn Toán (chuyên) năm học 2022 – 2023 trường THPT chuyên Hạ Long, tỉnh Quảng Ninh. Trích dẫn đề vào lớp 10 môn Toán (chuyên) năm 2022 – 2023 trường chuyên Hạ Long – Quảng Ninh : + Chứng minh rằng với x là số nguyên bất kỳ thì 25x + 1 không thể viết được dưới dạng tích hai số nguyên liên tiếp. + Cho tam giác ABC có ba góc nhọn, đường cao AH. Đường tròn (O) đường kính BC cắt AB tại E (E khác B). Gọi D là một điểm trên cung nhỏ BE (D khác B và D khác E). Hai đường thẳng DC và AH cắt nhau tại G, đường thẳng EG cắt đường tròn (O) tại M (M khác E), hai đường thẳng AH và BM cắt nhau tại I, đường thẳng CI cắt đường tròn (O) tại P (P khác). a) Chứng minh tứ giác DGIP nội tiếp; b) Chứng minh GA.GI = GE.GM; c) Hai đường thẳng AD và BC cắt nhau tại N, DB và CP cắt nhau tại K. Chứng minh hai đường thẳng NK và AH song song với nhau. + Chứng minh rằng trong 16 số nguyên dương đôi một khác nhau nhỏ hơn 23, bao giờ cũng tìm được hai số khác nhau có tích là số chính phương.