Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi tham khảo kỳ thi tốt nghiệp THPT năm 2024 môn Toán

giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi tham khảo kỳ thi tốt nghiệp Trung học Phổ thông năm 2024 môn Toán; đề thi được Bộ Giáo dục và Đào tạo công bố vào thứ Năm ngày 21 tháng 03 năm 2024. Đề thi gồm 05 trang, hình thức trắc nghiệm khách quan với 50 câu hỏi và bài toán, thời gian làm bài 90 phút (không kể thời gian phát đề). Đáp án và lời giải chi tiết của đề thi sẽ được cập nhật trong thời gian sắp tới. Trích dẫn Đề thi tham khảo kỳ thi tốt nghiệp THPT năm 2024 môn Toán : + Một vật trang trí có dạng một khối tròn xoay được tạo thành khi quay miền (R) (phần gạch chéo trong hình vẽ bên) quanh trục AB. Miền (R) được giới hạn bởi các cạnh AB, AD của hình vuông ABCD và các cung phần tư của các đường tròn bán kính bằng 1 cm với tâm lần lượt là trung điểm của các cạnh BC, AD. Tính thể tích của vật trang trí đó, làm tròn kết quả đến hàng phần mười. + Cho hàm số y = f(x) có đạo hàm f'(x) = x2 – 3x – 4 với mọi x thuộc R. Có bao nhiêu giá trị nguyên của tham số m sao cho ứng với mỗi m, hàm số g(x) = f(-x3 + 3×2 + m) có đúng hai điểm cực trị thuộc khoảng (1;4)? + Trong không gian Oxyz, cho hình nón (N) có đỉnh A(2; 3; 0), độ dài đường sinh bằng 5 và đường tròn đáy nằm trên mặt phẳng (P): 2x + y + 2z – 1 = 0. Gọi (C) là giao tuyến của mặt xung quanh của (N) với mặt phẳng (Q): x – 4y + z + 4 = 0 và M là một điểm di động trên (C). Hỏi giá trị nhỏ nhất của độ dài đoạn thẳng AM thuộc khoảng nào dưới đây?

Nguồn: toanmath.com

Đọc Sách

Đề thi thử THPT Quốc gia môn Toán 2018 lần 1 trường THPT Sơn Tây - Hà Nội
Đề thi thử THPT Quốc gia môn Toán 2018 lần 1 trường THPT Sơn Tây – Hà Nội gồm 50 câu hỏi trắc nghiệm, thời gian làm bài 90 phút. Trích dẫn đề thi : + Trong trò chơi “Chiếc nón kỳ diệu” chiếc kim của bánh xe có thể dừng lại ở một trong 6 vị trí với khả năng như nhau. Tính xác suất để trong ba lần quay, chiếc kim của bánh xe đó lần lượt dừng lại ở ba vị trí khác nhau. A. 5/36 B. 5/9 C. 5/54 D. 1/36 [ads] + Cho hàm số y = x(1 – x)(x^2 + 1) có đồ thị (C). Mệnh đề nào dưới đây đúng? A. (C) cắt trục hoành tại 3 điểm phân biệt B. (C) không cắt trục hoành C. (C) cắt trục hoành tại 2 điểm phân biệt D. (C) cắt trục hoành tại 1 điểm + Chọn khẳng định sai. Trong một khối đa diện A. Mỗi đỉnh là đỉnh chung của ít nhất 3 mặt B. Mỗi mặt có ít nhất 3 cạnh C. Mỗi cạnh của khối đa diện là cạnh chung của đúng 2 mặt D. Hai mặt bất kì luôn có ít nhất một điểm chung
Đề thi KSCĐ lần 1 năm học 2017 - 2018 môn Toán 12 trường THPT Phạm Công Bình - Vĩnh Phúc
Đề thi khảo sát chuyên đề (KSCĐ) lần 1 năm học 2017 – 2018 môn Toán 12 trường THPT Phạm Công Bình – Vĩnh Phúc gồm 6 mã đề, mỗi đề gồm 50 câu hỏi trắc nghiệm, thời gian làm bài 90 phút, tất cả các mã đề đều có đáp án. Trích dẫn đề thi : + Một ngọn hải đăng đặt tại vị trí A có khoảng cách đến bờ biển AB = 5km. Trên bờ biển có một cái kho ở vị trí C cách B một khoảng 7km. Người canh hải đăng có thể chèo đò từ A đến M trên bờ biển với vận tốc 4 km/h rồi đi bộ đến C với vận tốc 6 km/h. Vị trí của điểm M cách B một khoảng bao nhiêu để người đó đi đến kho nhanh nhất? A. (14 + 5√5)/12 km B. 2√5 km C. 0 km D. 7 km [ads] + Trong các mệnh đề sau, mệnh đề nào đúng? A. Hai khối chóp có hai đáy là tam giác đều bằng nhau thì thể tích bằng nhau B. Hai khối đa diện có thể tích bằng nhau thì bằng nhau C. Hai khối đa diện bằng nhau có thể tích bằng nhau D. Hai khối lăng trụ có chiều cao bằng nhau thì thể tích bằng nhau + Cho tam giác ABC với trọng tâm G. Gọi A’, B’, C’ lần lượt là trung điểm của các cạnh BC, AC, AB của tam giác ABC. Phép vị tự biến tam giác A’B’C’ thành tam giác ABC là: A. Phép vị tự tâm G, tỉ số k = 2 B. Phép vị tự tâm G, tỉ số k = -2 C. Phép vị tự tâm G, tỉ số k = -3 D. Phép vị tự tâm G, tỉ số k = 3
Đề thi khảo sát chất lượng lần 1 môn Toán 12 trường THPT Xuân Hòa - Vĩnh Phúc
Đề thi khảo sát chất lượng lần 1 môn Toán 12 trường THPT Xuân Hòa – Vĩnh Phúc gồm 6 mã đề, mỗi mã đề gồm 50 câu hỏi trắc nghiệm, thời gian làm bài 90 phút. Trích dẫn đề thi : + Trong các hàm số sau, hàm số nào là hàm số chẵn. A. y = sin|2016x| + cos2017x B. y = 2016cosx + 2017sinx C. y = cot2015x – 2016sinx D. y = tan2016x + cot2017x [ads] + Cho hàm số: y = x^3 + 2mx^2 + 3(m – 1)x + 2 có đồ thị (C). Đường thẳng d: y = -x + 2 cắt đồ thị (C) tại ba điểm phân biệt A(0; -2), B và C . Với M (3; 1), giá trị của tham số m để tam giác MBC có diện tích bằng 2√6 là: A. m = −1 B. m = −1 hoặc m = 4 C. m = 4 D. Không tồn tại m + Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật tâm I, cạnh bên SA vuông góc với đáy. H, K lần lượt là hình chiếu của A lên SC, SD. Khẳng định nào sau đây đúng? A. AH ⊥ (SCD) B. BD ⊥ (SAC) C. AK ⊥ (SCD) D. BC ⊥ (SAC)
Đề thi thử THPT Quốc gia 2018 môn Toán trường THPT Đội Cấn - Vĩnh Phúc lần 1
Đề thi thử THPT Quốc gia 2018 môn Toán trường THPT Đội Cấn – Vĩnh Phúc lần 1 gồm 6 trang với 50 câu hỏi trắc nghiệm, thời gian làm bài 90 phút. Trích dẫn đề thi : + Một công ty muốn làm một đường ống dẫn dầu từ một kho A ở trên bờ đến một vị trí B trên một hòn đảo. Hòn đảo cách bờ biển 6 km. Gọi C là điểm trên bờ sao cho BC vuông góc với bờ biển. Khoảng cách từ A đến C là 9 km. Người ta cần xác định một vị trí D trên AC để lắp ống dẫn theo đường gấp khúc ADB. Để số tiền chi phí thấp nhất mà công ty phải thì khoảng cách từ A đến D là bao nhiêu km, biết rằng chi phí để hoàn thành mỗi km đường ống trên bờ là 100 triệu đồng và dưới nước là 260 triệu đồng. A. 8 km B. 5 km C. 7,5 km D. 6,5 km [ads] + Từ các chữ số 0,1, 2,3, 4,5,6,7 có thể lập được bao nhiêu số tự nhiên có 5 chữ số đôi một khác nhau sao cho có đúng 3 chữ số chẵn và 2 chữ số lẻ? A. 2448 B. 3600 C. 2324 D. 2592 + Khẳng định nào sau đây là đúng? A. Hàm số y = tanx nghịch biến trên khoảng (0; π/2) B. Hàm số y = sinx đồng biến trên khoảng (0; π) C. Hàm số y = cotx nghịch biến trên khoảng (0; π) D. Hàm số y = cosx đồng biến trên khoảng (0; π)