Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Phân dạng và phương pháp giải toán số học và tổ hợp - Nguyễn Quốc Bảo

Tài liệu gồm 523 trang, được biên soạn bởi thầy giáo Nguyễn Quốc Bảo, phân dạng và hướng dẫn phương pháp giải toán chuyên đề số học và tổ hợp; tài liệu được sử dụng để bồi dưỡng học sinh giỏi Toán 8 – Toán 9 và ôn thi tuyển sinh vào lớp 10 môn Toán. Phần I . CÁC CHỦ ĐỀ SỐ HỌC THCS. Chủ đề 1 . Các bài toán về ước và bội. 1. Các bài toán liên quan tới số ước của một số. 2. Tìm số nguyên n thỏa mãn điều kiện chia hết. 3. Tìm số biết ƯCLN của chúng. 4. Tìm số biết BCNN và ƯCLN. 5. Các bài toán về các số nguyên tố cùng nhau. 6. Các bài toán về phân số tối giản. 7. Tìm ƯCLN của các biểu thức. 8. Liên hệ phép chia có dư, phép chia hết, ƯCLN, BCNN. 9. Tìm ƯCLN của hai số bằng thuật toán Ơ-clit. Chủ đề 2 . Các bài toán về quan hệ chia hết. 1. Sử dụng tính chất n số tự nhiên liên tiếp có một và chỉ một số chia hết cho n. 2. Sử dụng phương pháp phân tích thành nhân tử. 3. Sử dụng phương pháp tách tổng. 4. Sử dụng hằng đẳng thức. 5. Sử dụng phương pháp xét số dư. 6. Sử dụng phương pháp phản chứng. 7. Sử dụng phương pháp quy nạp. 8. Sử dụng nguyên lý Dirichlet. 9. Xét đồng dư. 10. Tìm điều kiện của biến để biểu thức chia hết. 11. Các bài toán cấu tạo số liên quan đến tính chia hết. 12. Các bài chia hết sử dụng định lý Fermat. 13. Các bài toán chia hết liên quan đến đa thức. Chủ đề 3 . Các bài toán về số nguyên tố, hợp số. 1. Chứng minh một số là số nguyên tố hay hợp số. 2. Chứng minh các bài toán liên quan đến tính chất số nguyên tố. 3. Tìm số nguyên tố thỏa mãn điều kiện nào đó. 4. Nhận biết số nguyên tố, sự phân bố số nguyên tố. 5. Chứng minh có vô số nguyên tố có dạng ax + b với (a;b) = 1. 6. Sử dụng nguyên lý Dirich trong bài toán số nguyên tố. 7. Áp dụng định lý Fermat. Chủ đề 4 . Các bài toán về số chính phương. 1. Chứng minh một số là số chính phương hay là tổng nhiều số chính phương. 2. Chứng minh một số không phải là số chính phương. 3. Tìm điều kiện của biến để một số là số chính phương. 4. Tìm số chính phương. Chủ đề 5 . Sử dụng đồng dư thức trong chứng minh các bài toán chia hết. 1. Sử dụng đồng dư thức trong chứng minh các bài toán chia hết. 2. Sử dụng đồng dư thức trong tìm số dư. 3. Sử dụng đồng dư thức trong tìm điều kiện của biến để chia hết. 4. Sử dụng đồng dư thức trong tìm một chữ số tận cùng. 5. Sử dụng đồng dư thức trong tìm hai chữ số tận cùng. 6. Sử dụng đồng dư thức trong các bài toán về số chính phương. 7. Sử dụng đồng dư thức trong các bài toán số nguyên tố, hợp số. 8. Sử dụng đồng dư thức trong phương trình nghiệm nguyên. 9. Sử dụng các định lý. Chủ đề 6 . Phương trình nghiệm nguyên. 1. Phát hiện tính chia hết của một ẩn. 2. Phương pháp đưa về phương trình ước số. 3. Phương pháp tách ra các giá trị nguyên. 4. Phương pháp sử dụng tính chẵn, lẻ và số dư từng vế. 5. Phương pháp sử dụng bất đẳng thức. 6. Phương pháp dùng tính chất của số chính phương. 7. Phương pháp lùi vô hạn, nguyên tắc cực hạn. Chủ đề 7 . Phần nguyên trong số học. 1. Phần nguyên của một số hoặc một biểu thức. 2. Chứng minh một đẳng thức chứa phần nguyên. 3. Phương trình phần nguyên. 4. Bất phương trình phần nguyên. 5. Phần nguyên trong chứng minh một số dạng toán số học. 6. Chứng minh bất đẳng thức chứa phần nguyên. Chủ đề 8 . Nguyên lý Dirichlet trong số học. 1. Chứng minh sự tồn tại chia hết. 2. Các bài toán về tính chất phần tử trong tập hợp. 3. Bài toán liên quan đến bảng ô vuông. 4. Bài toán liên quan đến thực tế. 5. Bài toán liên quan đến sự sắp xếp. 6. Vận dụng nguyên lý Dirichlet trong các bài toán hình học. Chủ đề 9 . Các bài toán sử dụng nguyên lý cực hạn. Chủ đề 10 . Nguyên lý bất biến trong giải toán. Phần II . HƯỚNG DẪN GIẢI – ĐÁP SỐ.

Nguồn: toanmath.com

Đọc Sách

Tuyển chọn các bài toán về bất đẳng thức và cực trị hình học
Nội dung Tuyển chọn các bài toán về bất đẳng thức và cực trị hình học Bản PDF - Nội dung bài viết Tài liệu ôn thi Toán vào lớp 10Các kiến thức cần nhớVí dụ minh họa và bài tập tự luyệnHướng dẫn giải và kết luận Tài liệu ôn thi Toán vào lớp 10 Tài liệu này bao gồm 102 trang, được tuyển chọn cẩn thận từ các bài toán về bất đẳng thức và cực trị hình học, cung cấp đầy đủ đáp án và lời giải chi tiết. Được thiết kế nhằm giúp học sinh trong quá trình ôn tập thi vào lớp 10 môn Toán cũng như ôn thi học sinh giỏi môn Toán ở bậc THCS. Các kiến thức cần nhớ Trước hết, tài liệu bắt đầu bằng việc giới thiệu một số kiến thức căn bản về hình học tam giác và đường tròn, giúp học sinh hiểu rõ hơn về quan hệ giữa các cạnh, góc trong tam giác và một số đặc điểm quan trọng về đường tròn. Thứ hai, tài liệu đi sâu vào quan hệ giữa đường xiên, đường vuông góc và hình chiếu của đường xiên trong các hình học phẳng, giúp học sinh hiểu rõ và áp dụng kiến thức này vào giải các bài toán phức tạp. Thứ ba, tài liệu cung cấp các bất đẳng thức liên quan đến diện tích của các hình học, từ các bất đẳng thức trong tam giác đến tứ giác, giúp học sinh rèn luyện kỹ năng tính toán và suy luận logic. Cuối cùng, tài liệu còn trình bày một số bất đẳng thức đại số thường được sử dụng, như bất đẳng thức Cauchy và Bunhiacopxki, giúp học sinh mở rộng tư duy và áp dụng kiến thức vào các bài toán phức tạp hơn. Ví dụ minh họa và bài tập tự luyện Ngoài ra, tài liệu còn bao gồm các ví dụ minh họa chi tiết và bài tập tự luyện đa dạng giúp học sinh thực hành và tự kiểm tra kiến thức của mình. Hướng dẫn giải và kết luận Để giúp học sinh hiểu rõ hơn cách giải các bài toán, tài liệu cung cấp hướng dẫn giải chi tiết từng bước, giúp học sinh tự tin hơn khi đối mặt với các bài toán khó. Kết luận cuốn tài liệu là sự tổng kết chặt chẽ về các kiến thức cơ bản và quan trọng giúp học sinh nắm vững kiến thức trước khi bước vào kỳ thi quan trọng.
Bài toán về quỹ tích tập hợp điểm
Nội dung Bài toán về quỹ tích tập hợp điểm Bản PDF Nội dung này là tài liệu tập hợp 59 trang, tập trung vào việc giải bài toán về quỹ tích - tập hợp điểm trong môn Toán. Tài liệu cung cấp các bài toán khó và hay, đi kèm với đáp án và lời giải chi tiết. Đây là tài liệu hữu ích cho học sinh ôn tập để chuẩn bị cho kỳ thi vào lớp 10 môn Toán và các kỳ thi học sinh giỏi cấp THCS.Tài liệu bắt đầu với việc giải thích định nghĩa của tập hợp điểm (quỹ tích), nơi một hình được xác định bởi các điểm thoả mãn một số tính chất. Sau đó, tài liệu hướng dẫn phương pháp chính để giải bài toán tập hợp điểm, bao gồm các bước cần thiết để tìm ra tập hợp các điểm thoả mãn một số điều kiện cho trước.Tài liệu cũng cung cấp một số kiến thức và tập hợp điểm cơ bản, như đường trung trực, tia phân giác, đường thẳng song song và đường tròn. Các định lí và hệ quả được trình bày rõ ràng, giúp học sinh hiểu rõ về các tập hợp điểm này và cách xác định chúng.Cuối cùng, tài liệu cũng đi kèm với các ví dụ minh họa và bài tập tự luyện để học sinh có thể rèn luyện kỹ năng giải bài toán về quỹ tích - tập hợp điểm. Hướng dẫn giải chi tiết giúp học sinh hiểu rõ từng bước giải quyết vấn đề và áp dụng kiến thức vào thực tế.Tóm lại, tài liệu này là nguồn thông tin hữu ích và chi tiết về cách giải bài toán về quỹ tích - tập hợp điểm trong môn Toán, giúp học sinh nắm vững kiến thức và kỹ năng cần thiết để thành công trong kỳ thi và các kỳ thi học sinh giỏi.
Các bài toán về tứ giác và đa giác đặc sắc
Nội dung Các bài toán về tứ giác và đa giác đặc sắc Bản PDF - Nội dung bài viết Các bài toán về tứ giác và đa giác đặc sắcMột số kiến thức về tứ giácCác bài tập tự luyện và hướng dẫn giải Các bài toán về tứ giác và đa giác đặc sắc Trong tài liệu này, bạn sẽ tìm thấy 82 trang chứa các bài toán thú vị về tứ giác và đa giác đặc sắc. Tất cả những bài toán này đều được chọn lọc kỹ càng, đảm bảo sự thú vị và khó khăn, đồng thời cung cấp đáp án và lời giải chi tiết. Đây sẽ là tài liệu hữu ích cho học sinh trong quá trình ôn tập để chuẩn bị cho kì thi vào lớp 10 môn Toán, cũng như cho việc ôn thi học sinh giỏi môn Toán ở bậc THCS. Một số kiến thức về tứ giác Trước hết, chúng ta cần biết rằng một tứ giác là một hình gồm bốn đoạn thẳng AB, BC, CD, DA và không có bất kỳ hai đoạn thẳng nào cùng nằm trên một đường thẳng. Tổng các góc của một tứ giác bằng 360 độ, và tổng các góc ngoài của một tứ giác cũng bằng 360 độ. Một khái niệm quan trọng khác về tứ giác là hình thang, là tứ giác có hai cạnh đối song song. Nếu một hình thang có hai cạnh bên song song, thì hai cạnh bên và hai cạnh đáy sẽ bằng nhau. Hình bình hành là tứ giác có các cặp cạnh đối song song, và trong hình bình hành, các cạnh và góc đối sẽ bằng nhau. Ngoài ra, còn có hình chữ nhật, hình thoi, và hình vuông, mỗi loại đều có những đặc điểm riêng biệt và các quy tắc tương ứng. Các bài tập tự luyện và hướng dẫn giải Tài liệu cũng cung cấp các ví dụ minh họa để giúp bạn hiểu rõ hơn về kiến thức về tứ giác và đa giác. Ngoài ra, có các bài tập tự luyện cùng với hướng dẫn giải chi tiết, giúp bạn rèn luyện kỹ năng và kiến thức một cách hiệu quả. Với tài liệu này, việc ôn tập và nắm vững kiến thức về tứ giác và đa giác sẽ trở nên dễ dàng và thú vị hơn bao giờ hết. Hãy cùng tham gia và trau dồi kiến thức để thành công trong kỳ thi sắp tới!
Các bài toán về tam giác đặc sắc
Nội dung Các bài toán về tam giác đặc sắc Bản PDF - Nội dung bài viết Bài toán về tam giác đặc sắc Bài toán về tam giác đặc sắc Sản phẩm tài liệu này bao gồm 90 trang, tập hợp các bài toán về tam giác đặc sắc thú vị và phức tạp, cung cấp đáp án và lời giải chi tiết. Được thiết kế để giúp học sinh tham khảo trong quá trình ôn tập dự thi vào lớp 10 môn Toán và ôn thi học sinh giỏi môn Toán bậc THCS. Bên dưới là một số nội dung chính trong tài liệu: Hệ thống kiến thức cơ bản về tam giác: Bao gồm các kiến thức về tổng ba góc trong tam giác, quan hệ giữa các yếu tố trong tam giác, các đường đồng quy trong tam giác, tam giác đồng dạng, hệ thức lượng trong tam giác. Một số kiến thức nâng cao thường áp dụng: Bao gồm các công thức về đường cao, đường trung tuyến, đường phân giác trong tam giác, các công thức về lượng giác trong tam giác, các định lí hình học nổi tiếng trong tam giác. Các thí dụ minh họa Bài tập tự luyện Hướng dẫn giải Tài liệu này sẽ giúp học sinh rèn luyện kỹ năng giải các bài toán về tam giác đặc sắc, từ những nội dung cơ bản đến những kiến thức nâng cao. Chắc chắn rằng người đọc sẽ có cơ hội hiểu sâu hơn về chủ đề này và chuẩn bị tốt cho các kì thi quan trọng.