Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề học sinh giỏi Toán 9 năm 2022 - 2023 trường THCS Cầu Giấy - Hà Nội

THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi môn Toán 9 năm học 2022 – 2023 trường THCS Cầu Giấy, quận Cầu Giấy, thành phố Hà Nội; đề thi gồm 01 trang với 05 bài toán dạng tự luận, thời gian học sinh làm bài thi là 90 phút (không kể thời gian phát đề); kỳ thi được diễn ra vào ngày … tháng 09 năm 2022. Trích dẫn Đề học sinh giỏi Toán 9 năm 2022 – 2023 trường THCS Cầu Giấy – Hà Nội : + Với các số thực không âm a, b, c thỏa mãn a + b + c = 3, tìm giá trị nhỏ nhất và giá trị lớn nhất của biểu thức T = 1/(a + 1) + 1/(b + 1) + 1(c + 1). + Cho tam giác ABC nhọn, không cân (AB < AC). Các đường cao AD, BE, CF của tam giác ABC đồng qui tại H. Gọi M là trung điểm của BC; I là trung điểm của AH. 1) Chứng minh IEM = 90°. 2) Đường thẳng qua I và vuông góc với HM cắt HM, EF lần lượt tại N, S. Đoạn thẳng IM cắt EF tại J. Chứng minh IJ.IM = IN.IS và SH song song với BC. 3) Đường thẳng SI cắt AB, AC lần lượt tại P, Q. Chứng minh I là trung điểm của PQ. + Xét tập hợp A gồm các số nguyên dương thỏa mãn đồng thời các điều kiện sau: (i) Phần tử lớn nhất của tập hợp A là 100. (ii) Với mọi phần tử x thuộc A, nếu x không phải là phần tử nhỏ nhất thì tồn tại a, b, c thuộc A (a, b, c không nhất thiết phân biệt) sao cho x = a + b + c. 1) Chứng minh tất cả các phần tử của tập hợp A đều là số chẵn. 2) Tập hợp A có nhiều nhất là bao nhiêu phần tử?

Nguồn: toanmath.com

Đọc Sách

Đề khảo sát HSG Toán 9 tháng 10 năm 2022 phòng GDĐT Chí Linh - Hải Dương
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề khảo sát chất lượng đội tuyển học sinh giỏi môn Toán 9 tháng 10 năm học 2022 – 2023 phòng Giáo dục và Đào tạo thành phố Chí Linh, tỉnh Hải Dương. Trích dẫn Đề khảo sát HSG Toán 9 tháng 10 năm 2022 phòng GD&ĐT Chí Linh – Hải Dương : + Tìm các số nguyên dương x, y thỏa mãn phương trình: x(y2 + 1) = 2y(16 – x). + Cho a, b, c, k là các số nguyên thỏa mãn: a3 + b3 + c3 − 1 = k2 – 2k – 2a + b – 2c. Chứng minh rằng k − 1 chia hết cho 3. + Cho nửa đường tròn (O;R) đường kính BC. A là điểm di động trên nửa đường tròn. Vẽ AH vuông góc với BC tại H. Đường tròn đường kính AH cắt AB, AC lần lượt tại D, E và cắt (O) tại M. AO cắt DE tại I. a) Tính DE3/BD.CE theo R. b) Tính: AI/HB + AI/HC. c) Xác định vị trí của điểm A để diện tích tam giác ABH lớn nhất.
Đề khảo sát đội tuyển HSG Toán 9 năm 2022 - 2023 sở GDĐT Thanh Hóa
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề khảo sát đội tuyển học sinh giỏi môn Toán 9 năm học 2022 – 2023 sở Giáo dục và Đào tạo tỉnh Thanh Hóa; kỳ thi được diễn ra vào ngày 07 tháng 09 năm 2022. Trích dẫn đề khảo sát đội tuyển HSG Toán 9 năm 2022 – 2023 sở GD&ĐT Thanh Hóa : + Tìm nghiệm nguyên của phương trình: (x + y)2(1 + xy) + 4xy = 6(x + y). + Cho hai số tự nhiên a, b thỏa mãn: a3/(a + b); b3/(b + a) đều là số nguyên tố. Chứng minh rằng a2 + 2b + 1 là số chính phương. + Cho nửa đường tròn tâm O, đường kính AB = 2R. Điểm C di động trên nửa đường tròn(C khác A và B). Kẻ CH vuông góc AB (H thuộc AB). Tia phân giác của các góc CAB và CBA cắt nhau tại I và cắt các cạnh đối diện lần lượt tại E và F. Tia phân giác của góc CHA cắt AE tại J, tia phân giác của góc CHB cắt BF tại K. Đường thẳng JK cắt CA, CB lần lượt tại M, N. 1. Chứng minh tam giác HJK đồng dạng tam giác CAB. 2. Chứng minh: CI = JK. 3. Xác định vị trí của C trên nửa đường tròn để JK có độ dài lớn nhất.
Đề học sinh giỏi Toán cấp quận năm 2022 - 2023 phòng GDĐT Đống Đa - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi môn Toán THCS cấp quận năm học 2022 – 2023 phòng Giáo dục và Đào tạo UBND quận Đống Đa, thành phố Hà Nội; kỳ thi được diễn ra vào ngày 15 tháng 10 năm 2022. Trích dẫn Đề học sinh giỏi Toán cấp quận năm 2022 – 2023 phòng GD&ĐT Đống Đa – Hà Nội : + Cho các số thực a, b, c thỏa mãn 0 ≤ a, b, c ≤ 2 và a + b + c = 3. Tìm giá trị lớn nhất và giá trị nhỏ nhất của biểu thức P = a2 + b2 + c2. + Tìm n là số tự nhiên sao cho 2^n – 1 chia hết cho 7. + Trên bảng viết 100 phân số. Ta thực hiện trò chơi như sau: tại mỗi bước, xóa đi hai số a, b bất kì trên bảng, nhưng lại viết thêm số (a − b + ab). Sau một số lần thực hiện quy tắc trên thì trên bảng còn lại đúng một số, chứng minh rằng đó là số tự nhiên.
Đề HSG Toán 9 vòng 1 năm 2022 - 2023 trường THCS Nguyễn Tri Phương - TT Huế
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi môn Toán 9 vòng 1 năm học 2022 – 2023 trường THCS Nguyễn Tri Phương, tỉnh Thừa Thiên Huế. Trích dẫn Đề HSG Toán 9 vòng 1 năm 2022 – 2023 trường THCS Nguyễn Tri Phương – TT Huế : + Cho bốn số nguyên dương m, n, p, q thỏa điều kiện m3 = 2p3, n3 = 5q3. Chứng minh rằng tổng m + n + p + q là một hợp số. + Cho tam giác ABC có đường phân giác AD. Tính góc BAC biết AB = 4cm, AC = 5cm, BC = 6cm. Cho tam giác A’B’C’ có đường phân giác A’D’. Chứng minh rằng ABC đồng dạng A’B’C’. + Cho đoạn thẳng AB = 4cm, trên cùng một nửa mặt phẳng có bờ AB về hai tia Ax, By vuông góc với AB. Trên Ax lấy điểm D, trên By lấy điểm C sao cho BD vuông góc AC. Gọi E là giao điểm của BD và AC, F và H lần lượt là trung điểm của EB và EC. Biết 8FH = 9AD. Tính CD. Tính giá trị nhỏ nhất của AC + BD.