Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi vào 10 môn Toán năm 2020 - 2021 trường chuyên Hoàng Văn Thụ - Hòa Bình (đề chuyên)

Đề thi tuyển sinh vào lớp 10 môn Toán năm học 2020 – 2021 trường THPT chuyên Hoàng Văn Thụ – Hòa Bình (đề dành cho học sinh thi vào các lớp chuyên Toán) gồm 01 trang với 05 bài toán dạng tự luận, thời gian học sinh làm bài thi là 150 phút (không tính thời gian phát đề). Trích dẫn đề thi vào 10 môn Toán năm 2020 – 2021 trường chuyên Hoàng Văn Thụ – Hòa Bình (đề chuyên) : + Cho tam giác ABC nội tiếp đường tròn (O). Tia phân giác của góc A cắt đường tròn (O) tại D. Chứng minh rằng AB + AC < 2AD. + Một ca nô xuôi dòng trên một khúc sông từ bên A đến bến B dài 96km, sau đó lại ngược dòng đến địa điểm C cách bến B là 100km, thời gian ca nô xuôi dòng ít hơn thời gian ngược dòng là 30 phút. Tính vận tốc riêng của ca nô, biết vận tốc của dòng nước là 4km/h. [ads] + Từ một điểm A nằm ngoài đường tròn (O;R) vẽ hai tiếp tuyến AB, AC với đường tròn (B, C là tiếp điểm). Trên cung nhỏ BC lấy một điểm M (M khác B, M khác C), từ M kẻ MI, MK, MP lần lượt vuông góc với AB, AC, BC (I thuộc 4B, K thuộc AC, P thuộc BC). 1) Chứng minh rằng: MPK = MBC. 2) Chứng minh rằng: Tam giác MIP đồng dạng với tam giác MIK. 3) Xác định vị trí của điểm M trên cung nhỏ BC để tích MI.MK.MP đạt giá trị lớn nhất.

Nguồn: toanmath.com

Đọc Sách

Đề tuyển sinh vào 10 môn Toán chuyên năm 2020 - 2021 sở GDĐT Đồng Tháp
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề thi tuyển sinh vào lớp 10 môn Toán chuyên năm học 2020 – 2021 sở Giáo dục và Đào tạo tỉnh Đồng Tháp; kỳ thi được diễn ra vào ngày 24 tháng 07 năm 2020; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm.
Đề tuyển sinh vào 10 môn Toán cơ sở năm 2020 - 2021 sở GDĐT Đồng Tháp
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề thi tuyển sinh vào lớp 10 môn Toán cơ sở năm học 2020 – 2021 sở Giáo dục và Đào tạo tỉnh Đồng Tháp; kỳ thi được diễn ra vào ngày 23 tháng 07 năm 2020; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm.
Đề tuyển sinh lớp 10 THPT môn Toán năm 2020 - 2021 sở GDĐT Thanh Hóa
Thứ Sáu ngày 17 tháng 07 năm 2020, sở Giáo dục và Đào tạo tỉnh Thanh Hóa tổ chức kỳ thi tuyển sinh vào lớp 10 khối THPT môn Toán năm học 2020 – 2021. Đề tuyển sinh lớp 10 THPT môn Toán năm 2020 – 2021 sở GD&ĐT Thanh Hóa gồm có 01 trang với 05 bài toán dạng tự luận, thời gian làm bài thi là 120 phút (không tính thời gian phát đề). Trích dẫn đề tuyển sinh lớp 10 THPT môn Toán năm 2020 – 2021 sở GD&ĐT Thanh Hóa : + Trong mặt phẳng tọa độ Oxy, cho đường thẳng (d) có phương trình y = ax + b. Tìm a, b để đường thẳng (d) cắt trục tung tại điểm có tung độ bằng 2 và đi qua điểm M(2;3). [ads] + Cho tam giác nhọn ABC nội tiếp đường tròn (O). Các đường cao BD, CE (D thuộc AC, E thuộc AB) của tam giác kéo dài lần lượt cắt đường tròn (O) tại các điểm M và N (M khác B, N khác C). 1. Chứng minh tứ giác BCDE nội tiếp được trong một đường tròn. 2. Chứng minh MN song song với DE. 3. Khi đường tròn (O) và dây BC cố định, điểm A di động trên cùng lớn BC sao cho tam giác ABC nhọn, chứng minh bán kính đường tròn ngoại tiếp tam giác ADE không đổi và tìm vị trí của điểm A để diện tích tam giác ADE đạt giá trị lớn nhất. + Cho ba số thực dương x, y, z thỏa mãn điều kiện x + y + z = xyz. Tìm giá trị nhỏ nhất của biểu thức: Q = (y + 2)/x^2 + (z + 2)/y^2 + (x + 2)/z^2.
Đề tuyển sinh lớp 10 THPT môn Toán năm 2020 - 2021 sở GDĐT Quảng Ninh
Sáng thứ Sáu ngày 17 tháng 07 năm 2020, sở Giáo dục và Đào tạo tỉnh Quảng Ninh tổ chức kỳ thi tuyển sinh vào lớp 10 khối THPT môn Toán năm học 2020 – 2021. Đề tuyển sinh lớp 10 THPT môn Toán năm 2020 – 2021 sở GD&ĐT Quảng Ninh gồm có 01 trang với 05 bài toán dạng tự luận, thời gian làm bài thi là 120 phút (không tính thời gian phát đề). Trích dẫn đề tuyển sinh lớp 10 THPT môn Toán năm 2020 – 2021 sở GD&ĐT Quảng Ninh : + Cho phương trình x^2 + 4x + 3m – 2 = 0, với m là tham số. 1. Giải phương trình với m = -1. 2. Tìm giá trị của m để phương trình đã cho có một nghiệm x = 2. 3. Tìm các giá trị của m để phương trình đã cho có hai nghiệm phân biệt x1 và x2 sao cho x1 + 2×2 = 1. + Giải bài toán sau bằng cách lập phương trình hoặc hệ phương trình: Khoảng cách giữa hai bến sông A và B là 32 km. Một canô xuôi dòng từ bến A đến bến B rồi lập tức quay về bến A. Kể từ lúc khởi hành đến lúc về tới bến A hết tất cả 6 giờ. Tính vận tốc của cano khi nước yên lặng, biết vận tốc của dòng nước là 4 km/h. [ads] + Cho đường tròn (O;R) và A là một điểm nằm bên ngoài đường tròn. Từ điểm A kẻ hai tiếp tuyến AB và AC với đường tròn (O) (B và C là hai tiếp điểm). Gọi H là giao điểm của AO và BC. Kẻ đường kính BD của đường tròn (O). AD cắt đường tròn tại điểm thứ hai là E. a. Chứng minh ABOC là tứ giác nội tiếp. b. Tính độ dài AH, biết R = 3cm, AB = 4cm. c. Chứng minh AE.AD = AH.AO. d. Tia CE cắt AH tại F. Chứng tỏ F là trung điểm của AH.