Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi HK2 Toán 10 năm 2018 - 2019 trường Lương Thế Vinh - Hà Nội

Nhằm giúp các em học sinh khối lớp 10 có thêm đề thi tham khảo để chuẩn bị cho kỳ thi học kỳ 2 môn Toán 10 sắp tới, chia sẻ đến các em đề thi HK2 Toán 10 năm 2018 – 2019 trường Lương Thế Vinh – Hà Nội, đề thi có mã đề 162 được biên soạn theo dạng đề trắc nghiệm khách quan, đề gồm 5 trang với 50 câu hỏi và bài toán, mỗi câu có 4 đáp án để học sinh lựa chọn, học sinh làm bài thi học kỳ 2 Toán 10 trong khoảng thời gian 90 phút, đề thi có đáp án mã đề [162], [251], [336], [465], [567], [633]. Trích dẫn đề thi HK2 Toán 10 năm 2018 – 2019 trường Lương Thế Vinh – Hà Nội : + Một viên gạch hình vuông có cạnh thay đổi được đặt nội tiếp trong một hình vuông có cạnh bằng 20cm, tạo thành bốn tam giác xung quanh như hình vẽ. Tìm tập hợp các giá trị của x để diện tích viên gạch không vượt quá 208cm2. [ads] + Trong mặt phẳng với hệ trục tọa độ Oxy, cho elip (E): x^2/25 + y^2/9 = 1 có hai tiêu điểm F1, F2. Biết rằng, điểm M là điểm có tung độ yM dương thuộc elip (E) sao cho bán kính đường tròn nội tiếp tam giác MF1F2 bằng 4/3. Khẳng định nào sau đây đúng? + Cho hàm số y = ax + b, trong đó a, b là tham số, a khác 0. Mệnh đề nào sau đây đúng? A. Hàm số y = ax + b nhận giá trị dương trên R. B. Hàm số y = ax + b nhận giá trị âm trên (-b/a;+∞). C. Hàm số y = ax + b nhận giá trị âm trên R. D. Hàm số y = ax + b nhận giá trị dương trên (-b/a;+∞).

Nguồn: toanmath.com

Đọc Sách

Đề thi học kì 2 Toán 10 năm 2019 - 2020 trường THCSTHPT Trí Đức - TP HCM
giới thiệu đến quý thầy, cô giáo cùng các em học sinh lớp 10 đề thi học kì 2 Toán 10 năm học 2019 – 2020 trường THCS&THPT Trí Đức, thành phố Hồ Chí Minh; đề thi có đáp án / lời giải chi tiết.
Đề thi học kì 2 Toán 10 năm 2019 - 2020 trường THPT Trưng Vương - TP HCM
giới thiệu đến quý thầy, cô giáo cùng các em học sinh lớp 10 đề thi học kì 2 Toán 10 năm học 2019 – 2020 trường THPT Trưng Vương, thành phố Hồ Chí Minh; đề thi có đáp án / lời giải chi tiết. Trích dẫn đề thi học kì 2 Toán 10 năm 2019 – 2020 trường THPT Trưng Vương – TP HCM : + Giải các bất phương trình sau. + Trong mặt phẳng Oxy, cho tam giác ABC biết: A B C. a) Viết phương trình tham số đường thẳng qua hai điểm A, B. b) Viết phương trình tổng quát đường thẳng d là trung trực của đoạn BC. c) Viết phương trình đường tròn ngoại tiếp tam giác ABC. + Trong mặt phẳng Oxy, cho đường tròn 2 2 C x y x y 12 6 44 0 và đường thẳng 4 3 12 0 x y. a) Tìm tâm và bán kính đường tròn (C). b) Viết phương trình tổng quát đường thẳng d tiếp xúc với đường tròn (C) tại điểm M thuộc đường tròn. c) Viết phương trình tổng quát đường thẳng d’ vuông góc với và tiếp xúc với đường tròn (C).
Đề thi học kì 2 Toán 10 năm 2019 - 2020 trường THPT Trường Chinh - TP HCM
giới thiệu đến quý thầy, cô giáo cùng các em học sinh lớp 10 đề thi học kì 2 Toán 10 năm học 2019 – 2020 trường THPT Trường Chinh, thành phố Hồ Chí Minh; đề thi có đáp án / lời giải chi tiết. Trích dẫn đề thi học kì 2 Toán 10 năm 2019 – 2020 trường THPT Trường Chinh – TP HCM : + Trong mặt phẳng với hệ trục Oxy, cho tam giác ABC với A B C. a) Viết phương trình tham số và phương trình tổng quát của đường cao. b) Viết phương trình tổng quát của đường thẳng BC. Tìm tọa độ điểm H. + Trong mặt phẳng với hệ trục Oxy, cho A B C. a) Viết phương trình đường tròn (S) có tâm B và đi qua điểm C. b) Viết phương trình đường tròn (T) ngoại tiếp tam giác ABC. Viết phương trình tiếp tuyến với (T) tại C. + Giải hệ bất phương trình.
Đề thi học kì 2 Toán 10 năm 2019 - 2020 trường Trương Vĩnh Ký - TP HCM
giới thiệu đến quý thầy, cô giáo cùng các em học sinh lớp 10 đề thi học kì 2 Toán 10 năm học 2019 – 2020 trường TH – THCS – THPT Trương Vĩnh Ký, thành phố Hồ Chí Minh; đề thi có đáp án / lời giải chi tiết. Trích dẫn đề thi học kì 2 Toán 10 năm 2019 – 2020 trường TH – THCS – THPT Trương Vĩnh Ký – TP HCM : + Trong mặt phẳng với hệ tọa độ Oxy, cho hai điểm A B (3;0) (0;4). a) Viết phương trình đường thẳng đi qua A và có vectơ pháp tuyến n(3;-2). Tính khoảng cách từ B đến đường thẳng. b) Biết rằng tồn tại đúng một hình vuông có hai đỉnh nằm trên đoạn AB, hai đỉnh còn lại nằm trên các đoạn OA, OB. Tìm tọa độ tâm I của hình vuông đó. + Trong mặt phẳng với hệ tọa độ Oxy, viết phương trình đường tròn có tâm A(1;-2) và qua B(5;1). + Rút gọn biểu thức A.