Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi định kỳ lần 3 Toán 12 năm học 2018 - 2019 trường THPT chuyên Bắc Ninh

giới thiệu đến thầy, cô và các em đề thi định kỳ lần 3 Toán 12 năm học 2018 – 2019 trường THPT chuyên Bắc Ninh, đây là đề thi thử THPT Quốc gia 2019 môn Toán của trường, nhằm kiểm tra kiến thức thường xuyên để giúp học sinh củng cố, nâng cao kiến thức, kỹ năng giải toán hướng đến kỳ thi chính thức môn Toán THPTQG năm 2019, đề được biên soạn với cấu trúc tương tự đề minh họa môn Toán 2019, đề gồm 06 trang với 50 câu hỏi và bài toán trắc nghiệm khách quan, học sinh làm bài trong 90 phút, không kể thời gian giáo viên phát đề, nội dung đề chủ yếu vẫn xoay quanh chương trình Toán 12, ngoài ra còn có một số ít những câu hỏi thuộc chương trình Toán lớp 10 và 11, đề thi có đáp án các mã đề 132, 209, 357, 485. Trích dẫn đề thi định kỳ lần 3 Toán 12 năm học 2018 – 2019 trường THPT chuyên Bắc Ninh : + Trên bàn có một cốc nước hình trụ chứa đầy nước, có chiều cao bằng 3 lần đường kính của đáy; một viên bi và một khối nón đều bằng thủy tinh. Biết viên bi là một khối cầu có đường kính bằng của cốc nước. Người ta từ từ thả vào cốc nước viên bi và khối nón đó (như hình vẽ) thì thấy nước trong cốc tràn ra ngoài. Tính tỉ số thể tích của lượng nước còn lại trong cốc và lượng nước ban đầu (bỏ qua bề dày của lớp vỏ thủy tinh). + Một khối trụ có thể tích bằng 16pi. Nếu chiều cao khối trụ tăng lên hai lần và giữ nguyên bán kính đáy thì được khối trụ mới có diện tích xung quanh bằng 16pi. Bán kính đáy của khối trụ ban đầu là? [ads] + Trong các mệnh đề sau đây, mệnh đề nào là đúng? A. Hai đường thẳng cùng vuông góc với một đường thẳng thì song song với nhau. B. Một đường thẳng vuông góc với một trong hai đường thẳng vuông góc thì song song với đường thẳng còn lại. C. Một đường thẳng vuông góc với một trong hai đường thẳng song song thì vuông góc với đường thẳng còn lại. D. Hai đường thẳng cùng vuông góc với một đường thẳng thì vuông góc với nhau.

Nguồn: toanmath.com

Đọc Sách

Đề thi thử tốt nghiệp THPT 2023 môn Toán lần 2 sở GDĐT Kiên Giang
giới thiệu đến quý thầy, cô giáo và các em học sinh đề thi thử tốt nghiệp THPT năm 2023 môn Toán lần 2 sở Giáo dục và Đào tạo tỉnh Kiên Giang; kỳ thi được diễn ra vào ngày 13 tháng 06 năm 2023. Trích dẫn Đề thi thử tốt nghiệp THPT 2023 môn Toán lần 2 sở GD&ĐT Kiên Giang : + Một vật thể đặt dọc theo trục Ox có vị trí bắt đầu từ x = 2 đến điểm kết thúc là x = 7. Người ta cắt vật thể đó bởi mặt phẳng vuông góc với Ox và được diện tích thiết diện có kích thước thay đổi theo hàm số f(x) = x2 + 2x (2 ≤ x ≤ 7). Thể tích vật thể đã cho bằng? + Một người gieo ngẫu nhiên một con xúc xắc cân đối và đồng chất 2 lần liên tiếp. Tính xác suất để tổng số chấm 2 lần gieo chia hết cho 5 và lần gieo thứ hai không bé hơn lần gieo thứ nhất. + Cho hàm số bậc ba y = f(x) = ax3 + (a – 9)x2 + cx + d (a khác 0) có đồ thị (C). Gọi (C) là đồ thị của hàm số y = f'(x). Biết rằng (C) và (C’) cắt nhau tại ba điểm có hoành độ là x1 = 2, x2 = 3 và x3 = 6. Diện tích hình phẳng giới hạn bởi các đường (C): y = f(x) và (C’): y = f'(x) bằng?
Đề thi thử tốt nghiệp THPT 2023 môn Toán cụm liên trường THPT - Ninh Bình
giới thiệu đến quý thầy, cô giáo và các em học sinh đề thi thử tốt nghiệp THPT năm 2023 môn Toán cụm liên trường THPT trực thuộc sở Giáo dục và Đào tạo tỉnh Ninh Bình (mã đề 132). Trích dẫn Đề thi thử tốt nghiệp THPT 2023 môn Toán cụm liên trường THPT – Ninh Bình : + Trên tập hợp số phức, xét phương trình 2 z m z m 2 45 2016 80 0 (m là tham số thực). Có tất cả bao nhiêu giá trị nguyên dương của m để phương trình đó có hai nghiệm phân biệt 1 2 z z sao cho 1 2 z z? + Trong không gian Oxyz, cho mặt cầu 2 S x y z 2 5 24 cắt mặt phẳng P x y 4 0 theo giao tuyến là đường tròn C. Điểm M thuộc C sao cho khoảng cách từ M đến A 4 12 1 nhỏ nhất có tung độ bằng? + Trên mặt phẳng tọa độ, tập hợp các điểm biểu diễn của số phức z thỏa mãn z i i z 2 3 là A. Đường tròn có phương trình 2 2 x y 4. B. Đường thẳng có phương trình x y 2 1 0. C. Đường thẳng có phương trình x y 2 3 0. D. Đường elip có phương trình 2 2 x y 4 4.
Đề thi thử Toán TN THPT 2023 lần 3 trường chuyên Nguyễn Trãi - Hải Dương
giới thiệu đến quý thầy, cô giáo và các em học sinh đề thi thử môn Toán ôn thi tốt nghiệp THPT năm học 2022 – 2023 lần 3 trường THPT chuyên Nguyễn Trãi, tỉnh Hải Dương; đề thi có đáp án mã đề 101 102 103 104. Trích dẫn Đề thi thử Toán TN THPT 2023 lần 3 trường chuyên Nguyễn Trãi – Hải Dương : + Cho hàm số bậc ba 3 2 f x ax bx cx d có hai điểm cực trị x = −1 và x = 3. Hình phẳng giới hạn bởi đồ thị hàm số y f x và đường thẳng đi qua hai điểm cực trị của đồ thị hàm số y f x có diện tích bằng 12. Giá trị f f (1) (3) bằng? + Trong hệ tọa độ Oxyz cho điểm A thuộc mặt cầu 2 2 1 (5) 1 S x y z và điểm B thuộc mặt cầu 2 2 9 S x y z. Điểm M thay đổi trên mặt phẳng 2 2 15 0 P x y z. Giá trị nhỏ nhất của biểu thức T MA MB thuộc khoảng nào sau đây? + Cho khối chóp S ABCD có đáy ABCD là hình vuông, SA ABCD và BD a 3 thể tích khối chóp S ABCD bằng 3 2 a (tham khảo hình vẽ bên dưới). Góc giữa đường thẳng SC và mặt phẳng (ABCD) bằng?
Đề thi thử TN THPT 2023 lần 2 môn Toán cụm THPT huyện Thuận Thành - Bắc Ninh
giới thiệu đến quý thầy, cô giáo và các em học sinh đề thi thử tốt nghiệp THPT năm 2023 lần 2 môn Toán cụm trường THPT và trung tâm GDTX huyện Thuận Thành, tỉnh Bắc Ninh; đề thi có đáp án mã đề Đề 101 Đề 102 Đề 103 Đề 104 Đề 105 Đề 106 Đề 107 Đề108 Đề 109 Đề 110 Đề 111 Đề 112 Đề 113 Đề 114 Đề 115 Đề 116 Đề 117 Đề 118 Đề 119 Đề 120 Đề 121 Đề 122 Đề 123 Đề 124; kỳ thi được diễn ra vào chiều thứ Sáu ngày 09 tháng 06 năm 2023. Trích dẫn Đề thi thử TN THPT 2023 lần 2 môn Toán cụm THPT huyện Thuận Thành – Bắc Ninh : + Cho hàm số 432 y f x ax bx cx dx e a b c d e R và 3 y gx x 4 3 có đồ thị như hình vẽ bên. Biết hai đồ thị y f x y gx cắt nhau tại 4 điểm phân biệt có hoành độ 1234 xx thỏa mãn 14 3 xx và xx 14 2 3 4 0 đồng thời diện tích phần gạch chéo trên hình bằng 7 10. Hỏi diện tích hình phẳng giới hạn bởi hai đồ thị hàm số y fx hx a b c d e 4 nằm trong khoảng nào dưới đây? + Cho hình trụ tròn xoay có hai đáy là hai hình tròn(O;4) và (O′;4). Biết rằng tồn tại dây cung AB của đường tròn O sao cho ∆O’AB là tam giác đều và mặt phẳng (O’AB) hợp với đáy một góc 0 30. Tính diện tích xung quanh xq S của hình nón có đỉnh O′ đáy là hình tròn (O;4). + Trong không gian Oxyz cho hai đường thẳng 2 1 2 20 x xm d y d ym tR zt z t và điểm K (8;-1;0). Biết rằng tồn tại đường thẳng ∆ đi qua điểm K vuông góc với 2 đường 1 2 d d đồng thời thỏa mãn d d d d d Oz (1 2 ∆). Hỏi có tất cả bao nhiêu giá trị thực của m thỏa mãn?