Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Toàn cảnh đề chính thức và đề minh họa THPT 2020 môn Toán của Bộ GDĐT

Tài liệu gồm 198 trang, được biên soạn bởi quý thầy, cô giáo Nhóm Word Và Biên Soạn Tài Liệu Toán, phân loại và hướng dẫn giải các câu hỏi và bài toán trong đề chính thức và đề minh họa THPT 2020 môn Toán của Bộ Giáo dục và Đào tạo. Mục lục tài liệu toàn cảnh đề chính thức và đề minh họa THPT 2020 môn Toán của Bộ GD&ĐT: 1. PHÉP ĐẾM (QUY TẮC CỘNG – QUY TẮC NHÂN). 2. HOÁN VỊ – CHỈNH HỢP – TỔ HỢP. 2.1 Đếm số (chỉ dùng một loại P hoặc A hoặc C). 2.2 Chọn người, vật. 3. XÁC SUẤT. 4. CẤP SỐ CỘNG. 5. CẤP SỐ NHÂN. 6. ĐƯỜNG THẲNG VUÔNG GÓC MẶT PHẲNG. 6.1 Góc giữa đường thẳng và mặt phẳng. 6.2 Góc giữa đường thẳng và mặt phẳng. 7. KHOẢNG CÁCH. 7.1 Từ chân H của đường cao đến mặt phẳng cắt đường cao. 7.2 Từ điểm M (khác H) đến mặt phẳng cắt đường cao. 7.3 Hai đường chéo nhau (vẽ đoạn vuông góc chung). 7.4 Hai đường chéo nhau (mượn mặt phẳng). 8. TÍNH ĐƠN ĐIỆU CỦA HÀM SỐ. 8.1 Xét tính đơn điệu của hàm số (biết đồ thị, bảng biến thiên của y). 8.2 Điều kiện để hàm số bậc ba đơn điệu trên khoảng K. 8.3 Điều kiện để hàm số nhất biến đơn điệu trên khoảng K. 8.4 Đơn điệu liên quan hàm hợp, hàm ẩn. 8.5 Ứng dụng tính đơn điệu vào PT – BPT – HPT – BĐT. 9. CỰC TRỊ CỦA HÀM SỐ. 9.1 Tìm cực trị của hàm số cho bởi công thức của y, y’. 9.2 Tìm cực trị, điểm cực trị, số điểm cực trị (khi biết đồ thị, bảng biến thiên của y). 9.3 Tìm cực trị, điểm cực trị, số điểm cực trị (khi biết đồ thị, bảng xét dấu của y’). 9.4 Cực trị liên quan hàm hợp, hàm ẩn. 9.5 Cực trị liên quan hàm chứa dấu giá trị tuyệt đối. 10. GIÁ TRỊ LỚN NHẤT – GIÁ TRỊ NHỎ NHẤT CỦA HÀM SỐ. 10.1 GTLN – GTNN của f(x) trên đoạn [a;b] biết biểu thức f(x). 10.2 Tìm m để hàm số f(x) có GTLN – GTNN thỏa mãn điều kiện cho trước. 10.3 GTLN – GTNN hàm nhiều biến dạng khác. 11. TIỆM CẬN CỦA ĐỒ THỊ HÀM SỐ. 11.1 Tiệm cận đồ thị hàm số phân thức hữu tỷ, không chứa tham số. 11.2 Tiệm cận đồ thị hàm số f(x) dựa vào bảng biến thiên không tham số. 12. ĐỌC ĐỒ THỊ – BIẾN ĐỔI ĐỒ THỊ. 12.1 Nhận dạng các hàm số thường gặp (biết đồ thị, bảng biến thiên). 12.2 Xét dấu hệ số của biểu thức (biết đồ thị, bảng biến thiên). 12.3 Đọc đồ thị của đạo hàm (các cấp. 12. TƯƠNG GIAO CỦA HAI ĐỒ THỊ. 12.1 Tìm toạ độ (đếm) giao điểm. 12.2 Đếm số nghiệm phương trình cụ thể (cho đồ thị, bảng biến thiên). 12.3 Tương giao liên quan hàm hợp, hàm ẩn. 12.4 Điều kiện để f(x) = g(m) có n nghiệm (chứa GTTĐ). 12.5 Điều kiện để f(x) = g(m) có n nghiệm thuộc K (không GTTĐ). 13. MŨ – LŨY THỪA. 13.1 Kiểm tra quy tắc biến đổi lũy thừa, tính chất. 13.2 Tính toán, rút gọn các biểu thức có chứa biến(a, b, c, x, y, . . .). 14. LOGARIT. 14.1 Câu hỏi lý thuyết và tính chất. 14.2 Biến đổi các biểu thức logarit liên quan a, b, x, y. 14.3 Tính giá trị các biểu thức logarit không dùng BĐT. 14.4 Dạng toán khác về logarit. 15. HÀM SỐ MŨ – LOGARIT. 15.1 Tập xác định liên quan hàm số mũ, hàm số logarit. 15.2 Đạo hàm liên quan hàm số mũ, hàm số logarit. 15.3 Đồ thị liên quan hàm số mũ, logarit. 15.4 Câu hỏi tổng hợp liên quan hàm số lũy thừa, mũ, logarit. 15.5 Bài toán lãi suất. 15.6 Bài toán tăng trưởng. 15.6 Hàm số mũ,logarit chứa tham số. 15.6 GTLN – GTNN liên quan hàm mũ, hàm logarit(nhiều biến). 16. PHƯƠNG TRÌNH – BẤT PHƯƠNG TRÌNH MŨ. 16.1 PT – BPT mũ cơ bản, gần cơ bản (không tham số). 16.2 Phương pháp đưa về cùng cơ số (không tham số). 16.3 Phương pháp hàm số, đánh giá (không tham số). 17. PHƯƠNG TRÌNH – BẤT PHƯƠNG TRÌNH LOGARIT. 17.1 Câu hỏi lý thuyết. 17.2 PT – BPT logarit cơ bản, gần cơ bản (không tham số). 17.3 Phương pháp đưa về cùng cơ số (không tham số). 17.4 Phương pháp phân tích thành nhân tử (không tham số). 17.5 Phương pháp hàm số, đánh giá (không tham số). 17.6 Phương trình logarit có chứa tham số. 17.7 Phương trình, bất phương trình tổ hợp cả mũ và logarit có tham số. 18. NGUYÊN HÀM. 18.1 Định nghĩa, tính chất của nguyên hàm. 18.2 Nguyên hàm của hàm số cơ bản, gần cơ bản. 18.3 Nguyên hàm phân thức. 18.4 Phương trình nguyên hàm từng phần. 18.5 Nguyên hàm kết hợp đổi biến và từng phần hàm xác định. 18.6 Nguyên hàm liên quan đến hàm ẩn. 19. TÍCH PHÂN. 19.1 Kiểm tra định nghĩa, tính chất của tích phân. 19.2 Tích phân cơ bản, kết hợp tính chất. 19.3 Phương pháp tích phân từng phần hàm xác định. 19.4 Kết hợp đổi biến và từng phần tính tích phân hàm xác định. 19.5 Tích phân liên quan đến phương trình hàm ẩn. 20. ỨNG DỤNG TÍCH PHÂN. 20.1 Xác định công thức tính diện tích, thể tích dựa vào đồ thị. 20.2 Diện tích hình phẳng được giới hạn bởi các đồ thị hàm xác định. 20.3 Thể tích giới hạn bởi các đồ thị (tròn xoay) hàm xác định. 21. KHÁI NIỆM SỐ PHỨC. 21.1 Các yếu tố và thuộc tính cơ bản của số phức. 22. CÁC PHÉP TOÁN SỐ PHỨC. 22.1 Thực hiện các phép toán cơ bản về số phức. 22.2 Xác định các yếu tố của số phức (phần thực, ảo, mô đun, liên hợp) qua các phép toán. 22.3 Giải phương trình bậc nhất theo z (và z liên hợp). 23. BIỂU DIỄN HÌNH HỌC CỦA SỐ PHỨC. 23.1 Câu hỏi lý thuyết, biểu diễn hình học của số phức. 23.2 Tập hợp điểm biểu diễn là đường tròn, hình tròn. 24. PHƯƠNG TRÌNH BẬC HAI VỚI HỆ SỐ THỰC. 24.1 Tính toán biểu thức nghiệm. 24.1 Các bài toán biểu diễn hình học nghiệm của phương trình. 24.1 Các bài toán khác về phương trình. 25. THỂ TÍCH KHỐI CHÓP. 25.1 Câu hỏi dạng lý thuyết (công thức V, h, B). 25.2 Thể tích khối chóp đều. 25.3 Thể tích khối chóp khác. 25.4 Tỉ số thể tích trong khối chóp. 26. THỂ TÍCH KHỐI LĂNG TRỤ – ĐA DIỆN KHÁC. 26.1 Câu hỏi dạng lý thuyết(Công thức V, h, B). 26.2 Thể tích khối lập phương, khối hộp chữ nhật. 26.3 Thể tích khối lăng trụ đều. 26.4 Thể tích khối đa diện phức tạp. 27. KHỐI NÓN. 27.1 Câu hỏi lý thuyết về khối nón. 27.1 Diện tích xung quanh, diện tích toàn phần, thể tích (liên quan) khối nón khi biết các dữ kiện cơ bản. 28. KHỐI TRỤ. 28.1 Diện tích xung quanh, diện tích toàn phần, thể tích (liên quan) khối trụ khi biết các dữ kiện cơ bản. 28.2 Bài toán thực tế về khối trụ. 29. KHỐI CẦU. 29.1 Câu hỏi chỉ liên quan đến biến đổi V, S, R. 29.2 Khối cầu nội – ngoại tiếp, liên kết khối đa diện. 29.3 Bài toán tổng hợp về khối nón, khối trụ, khối cầu. 30. TỌA ĐỘ ĐIỂM – VECTƠ. 30.1 Hình chiếu của điểm lên các trục tọa độ, lên các mặt phẳng tọa độ và điểm đối xứng của nó. 31. PHƯƠNG TRÌNH MẶT CẦU. 31.1 Tìm tâm và bán kính, điều kiện xác định mặt cầu. 32.1 Điểm thuộc mặt cầu thoả điều kiện. 32. PHƯƠNG TRÌNH MẶT PHẲNG. 32.1 Tìm VTPT, các vấn đề về lý thuyết. 32.2 Phương trình mặt phẳng trung trực của đoạn thẳng. 32.3 Phương trình mặt phẳng qua một điểm, dễ tìm VTPT (không dùng tích có hướng). 33.4 Phương trình mặt phẳng qua một điểm, song song với một mặt phẳng. 33.5 Phương trình mặt phẳng theo đoạn chắn. 33.6 Phương trình mặt phẳng qua một điểm, vuông góc với đường thẳng. 33. PHƯƠNG TRÌNH ĐƯỜNG THẲNG. 33.1 Các câu hỏi chưa phân dạng. 33.2 Tìm VTCP, các vấn đề về lý thuyết. 33.3 Phương trình đường thẳng qua một điểm, dễ tìm VTCP (không dùng tích có hướng). 33.4 Phương trình đường thẳng qua một điểm, thoả điều kiện khác. 33.5 Toán GTLN – GTNN liên quan đến đường thẳng.

Nguồn: toanmath.com

Đọc Sách

Tổng hợp lý thuyết Toán THPT - Nguyễn Trọng Đoàn
Tài liệu gồm 70 trang, được biên soạn bởi thầy giáo Nguyễn Trọng Đoàn, tổng hợp lý thuyết Toán THPT, giúp học sinh tra cứu khi học chương trình Toán 10, Toán 11, Toán 12 và ôn thi THPT Quốc gia môn Toán. Mục lục tài liệu tổng hợp lý thuyết Toán THPT – Nguyễn Trọng Đoàn: I. LÍ THUYẾT LỚP 10 1. Đại số 10. Chương 1. Mệnh đề – tập hợp. Chương 2. Hàm số bậc nhất và hàm số bậc hai. Chương 3. Phương trình và hệ phương trình. Chương 4. Bất đẳng thức. Chương 6. Góc lượng giác và công thức lượng giác. 2. Hình học 10. Chương 1. Vec tơ. Chương 2. Tích vô hướng hai vec tơ và ứng dụng. Chương 3. Phương pháp tọa độ trong mặt phẳng. II. LÍ THUYẾT LỚP 11 1. Đại số và Giải tích 11. Chương 1. Hàm số lượng giác và phương trình lượng giác. Chương 2. Tổ hợp – xác suất. Chương 3. Dãy số – cấp số cộng – cấp số nhân. Chương 4. Giới hạn. Chương 5. Đạo hàm. 2. Hình học 11. Chương 1. Phép biến hình. Chương 2. Quan hệ song song trong không gian. Chương 3. Quan hệ vuông góc trong không gian. III. LÍ THUYẾT LỚP 12 1. Giải tích 12. Chương 1. Ứng dụng đạo hàm và khảo sát hàm số. Chương 2. Hàm số lũy thừa – mũ – logarit. Chương 3. Nguyên hàm – tích phân. Chương 4. Số phức. 2. Hình học 12. Chương 1. Khối đa diện và thể tích khối đa diện. Chương 2. Mặt trụ – mặt nón – mặt cầu. Chương 3. Phương pháp tọa độ trong không gian.
15 dạng toán VD - VDC ôn thi THPT môn Toán
Tài liệu gồm 777 trang, tuyển chọn các câu hỏi và bài tập trắc nghiệm 15 dạng toán vận dụng – vận dụng cao (VD – VDC) ôn thi THPT môn Toán; các câu hỏi và bài tập được sáng tác, phát triển dựa trên đề minh họa tốt nghiệp THPT môn Toán của Bộ Giáo dục và Đào tạo, có đáp án và lời giải chi tiết. Mục lục tài liệu 15 dạng toán VD – VDC ôn thi THPT môn Toán: + Dạng toán 1. Tính xác suất bằng định nghĩa. + Dạng toán 2. Tính khoảng cách giữa hai đường thẳng chéo nhau. + Dạng toán 3. Tích phân. + Dạng toán 4. Tìm tham số để hàm số bậc nhất / bậc nhất đơn điệu. + Dạng toán 5. Khối nón. + Dạng toán 6. Lôgarit. + Dạng toán 7. Giá trị lớn nhất và giá trị nhỏ nhất hàm số trị tuyệt đối chứa tham số. + Dạng toán 8. Phương trình lôgarit chứa tham số. + Dạng toán 9. Nguyên hàm từng phần. + Dạng toán 10. Bài toán liên quan đến giao điểm của hai đồ thị. + Dạng toán 11. Tìm cực trị hàm hợp f(u(x)) khi biết đồ thị hàm số f(x) hoặc f'(x). + Dạng toán 12. Ứng dụng phương pháp hàm số để giải phương trình mũ – lôgarit. + Dạng toán 13. Tích phân liên quan đến hàm ẩn. + Dạng toán 14. Tính thể tích khối đa diện. + Dạng toán 15. Tính đơn điệu của hàm liên kết.
Tài liệu ôn thi THPT môn Toán giai đoạn 1 - Lê Văn Đoàn
Tài liệu gồm 83 trang, được biên soạn bởi nhóm Toán thầy Lê Văn Đoàn: Ths. Lê Văn Đoàn – Ths. Trương Huy Hoàng – Ths. Nguyễn Tiến Hà – Bùi Sỹ Khanh – Nguyễn Đức Nam – Đỗ Minh Tiến, tuyển chọn 481 bài tập trắc nghiệm (có đáp án) các chuyên đề: hàm số và các vấn đề liên quan, thể tích khối đa diện; giúp học sinh khối 12 ôn thi THPT môn Toán giai đoạn giữa học kỳ 1 (giai đoạn 1). Mục lục tài liệu ôn thi THPT môn Toán giai đoạn 1 – Lê Văn Đoàn: Chuyên đề 1 . HÀM SỐ VÀ CÁC VẤN ĐỀ LIÊN QUAN. + Bài toán 1. Đơn điệu, cực trị, giá trị lớn nhất – giá trị nhỏ nhất, tiệm cận và tương giao khi đề bài cho bảng biến thiên hoặc đồ thị f(x) hoặc f'(x) (Trang 1). + Bài toán 2. Đơn điệu, cực trị, giá trị lớn nhất – giá trị nhỏ nhất, tiệm cận và tương giao khi đề bài cho hàm số f(x) hoặc f'(x) cụ thể (Trang 11). + Bài toán 3. Bài toán chứa tham số (Trang 19). + Bài toán 4. Đơn điệu, cực trị, giá trị lớn nhất – giá trị nhỏ nhất, tiệm cận và tương giao của hàm hợp (Trang 41). + Bài toán 5. Nhận dạng đồ thị hàm số và biện luận nghiệm dựa vào bảng biến thiên hoặc đồ thị (Trang 53). + Bài toán 6. Tiếp tuyến của đồ thị hàm số (Trang 58). Chuyên đề 2 . THỂ TÍCH KHỐI ĐA DIỆN. + Bài toán 1. Thể tích khối chóp, khối lập phương, khối hộp chữ nhật, khối lăng trụ (Trang 60). + Bài toán 2. Bài toán cực trị thể tích (Trang 63). + Bài toán 3. Tỉ số thể tích (Trang 70). + Bài toán 4. Góc và khoảng cách trong không gian (Trang 74).
Các chuyên đề Giải tích ôn thi tốt nghiệp THPT - Lư Sĩ Pháp
Tài liệu gồm 118 trang, được biên soạn bởi thầy Lư Sĩ Pháp, tuyển chọn hệ thống bài tập trắc nghiệm Giải tích có đáp án, bám sát đề thi minh họa, đề thi tham khảo tốt nghiệp THPT của Bộ Giáo dục và Đào tạo; đây là tập 1 trong bộ sách “Toán ôn thi tốt nghiệp” của thầy Lư Sĩ Pháp. Nội dung của tài liệu bám sát chương trình của Bộ Giáo dục và Đào tạo quy định. Toán ôn thi tốt nghiệp (tập 1) gồm các chuyên đề về Giải tích: [ads] Chuyên đề 1. Khảo sát hàm số (trang 01 – trang 36). Chuyên đề 2. Lũy thừa – mũ – lôgarit (trang37 – trang 59). Chuyên đề 3. Nguyên hàm – tích phân (trang 60 – trang 83). Chuyên đề 4. Số phức (trang 84 – trang 99). Chuyên đề 5. Cấp số cộng – cấp số nhân (trang 100 – trang 104). Chuyên đề 6. Tổ hợp – xác suất (trang 105 – trang 114). Xem thêm : Các chuyên đề Hình học ôn thi tốt nghiệp THPT – Lư Sĩ Pháp