Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề học sinh giỏi tỉnh Toán 9 năm 2020 - 2021 sở GDĐT Thừa Thiên Huế

Đề học sinh giỏi tỉnh Toán 9 năm 2020 – 2021 sở GD&ĐT Thừa Thiên Huế gồm 01 trang với 06 bài toán dạng tự luận, thời gian làm bài 150 phút, kỳ thi được diễn ra vào thứ Ba ngày 06 tháng 04 năm 2021. Trích dẫn đề học sinh giỏi tỉnh Toán 9 năm 2020 – 2021 sở GD&ĐT Thừa Thiên Huế : + Cho tam giác nhọn ABC (AB < AC) có A = 60° nội tiếp đường tròn (O;R). Hai đường cao BE, CF cắt nhau tại H. Gọi I là giao điểm hai đường thẳng EF và CB. Đường thẳng AI cắt đường tròn (O) tại điểm thứ hai là M. a) Tính độ dài cạnh BC theo R. b) Chứng minh tứ giác AMFE nội tiếp được trong một đường tròn. c) Kéo dài MH cắt đường tròn (O) tại K. Tính AB.CK + AC.BK theo R. + Cho tam giác ABC cân (AB = AC) nội tiếp đường tròn (O). M là điểm bất kỳ trên dây BC. Vẽ đường tròn (D) qua M và tiếp xúc với AB tại B; vẽ đường tròn (E) qua M và tiếp xúc với AC tại C. Gọi N là giao điểm thứ hai của hai đường tròn (D) và (E). a) Chứng minh tứ giác ABNC nội tiếp. b) Chứng minh AM.AN = AC2. c) Khi điểm M thay đổi trên BC thì trung điểm I của đoạn DE chạy trên đường nào? + Cho biểu thức: E = x2 – 3x + y2 + xy + 2025. Với giá trị nào của x, y thì E đạt giá trị nhỏ nhất? Tính giá trị nhỏ nhất đó.

Nguồn: toanmath.com

Đọc Sách

Đề học sinh giỏi Toán 9 năm 2021 - 2022 phòng GDĐT thành phố Bắc Ninh
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi môn Toán 9 năm học 2021 – 2022 phòng Giáo dục và Đào tạo UBND thành phố Bắc Ninh, tỉnh Bắc Ninh. Trích dẫn đề học sinh giỏi Toán 9 năm 2021 – 2022 phòng GD&ĐT thành phố Bắc Ninh : + Tìm tất cả các số nguyên dương n sao cho mỗi số n 26 và n 11 đều là các lập phương của một số nguyên dương. + Cho tam giác nhọn ABC nội tiếp đường tròn O R có B C cố định. Các đường cao AD BE CF của tam giác ABC đồng quy tại H. Đường thẳng chứa tia phân giác ngoài của BHC cắt AB AC lần lượt tại M N. a) Chứng minh rằng tam giác AMN cân. b) Chứng minh OA vuông góc với EF AD BC DE EF FD R. c) Đường tròn ngoại tiếp tam giác AMN cắt đường phân giác của BAC tại K K A. Chứng minh rằng HK luôn đi qua một điểm cố định khi A thay đổi. + Cho mỗi điểm trên mặt phẳng được tô bằng một trong hai màu xanh, đỏ. Chứng minh rằng tồn tại một tam giác mà ba đỉnh và trọng tâm cùng màu.
Đề học sinh giỏi Toán 9 năm 2021 - 2022 phòng GDĐT Thanh Trì - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi cấp huyện môn Toán lớp 9 năm học 2021 – 2022 phòng Giáo dục và Đào tạo UBND huyện Thanh Trì, thành phố Hà Nội; kỳ thi được diễn ra vào thứ Năm ngày 10 tháng 02 năm 2022.
Đề chọn đội tuyển Toán 9 năm 2021 - 2022 trường chuyên Hà Nội - Amsterdam
Thứ Năm ngày 10 tháng 02 năm 2022, trường THPT chuyên Hà Nội – Amsterdam tổ chức kì thi kiểm tra chọn đội tuyển học sinh giỏi môn Toán lớp 9 năm học 2021 – 2022 (vòng thi thứ nhất). Đề chọn đội tuyển Toán 9 năm 2021 – 2022 trường chuyên Hà Nội – Amsterdam gồm 01 trang với 05 bài toán dạng tự luận, thời gian học sinh làm bài thi là 150 phút (không kể thời gian phát đề).
Đề học sinh giỏi Toán THCS năm 2021 - 2022 phòng GDĐT thành phố Hưng Yên
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi Toán THCS cấp thành phố năm học 2021 – 2022 phòng GD&ĐT thành phố Hưng Yên, tỉnh Hưng Yên; kỳ thi được diễn ra vào ngày 20 tháng 01 năm 2022.