Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề kiểm tra cuối học kỳ 1 Toán 8 năm 2023 - 2024 sở GDĐT Bắc Ninh

THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề kiểm tra cuối học kỳ 1 môn Toán 8 năm học 2023 – 2024 sở Giáo dục và Đào tạo tỉnh Bắc Ninh; kỳ thi được diễn ra vào thứ Ba ngày 26 tháng 12 năm 2023; đề thi có đáp án trắc nghiệm và hướng dẫn chấm tự luận. Trích dẫn Đề kiểm tra cuối học kỳ 1 Toán 8 năm 2023 – 2024 sở GD&ĐT Bắc Ninh : + Với câu hỏi: Trong đợt thi đua chào mừng 20/11 bạn được bao nhiêu hoa điểm tốt? Kết quả: 55, 60, 68, 75. Dãy dữ liệu trên thuộc loại nào? A. Dữ liệu là số liệu rời rạc. B. Dữ liệu là số liệu liên tục. C. Dữ liệu không là số, không thể sắp thứ tự. D. Dữ liệu không là số, có thể sắp thứ tự. + Cho ABC vuông tại A, ba điểm D E F lần lượt là trung điểm của AB BC CA. a) Giải thích vì sao EF // AB. b) Tứ giác ADEF là hình gì? Vì sao? c) Gọi K là trung điểm của DE. Chứng minh rằng B K F thẳng hàng. + Bạn Hải làm một khung tranh gỗ để trang trí góc học tập có dạng như hình vẽ biết thanh AC và BD song song với nhau, thanh AC dài 20 cm, thanh BD dài 30 cm. Đầu A của thanh AC đặt trên thanh BM cách điểm B một khoảng 20 cm. Hỏi bạn Hải phải cắt thanh MB dài bao nhiêu cm.

Nguồn: toanmath.com

Đọc Sách

Đề kiểm tra học kỳ 1 Toán 8 năm 2018 - 2019 phòng GDĐT Tây Hồ - Hà Nội
Đề kiểm tra học kỳ 1 Toán 8 năm học 2018 – 2019 phòng GD&ĐT Tây Hồ – Hà Nội gồm 1 trang được biên soạn theo hình thức tự luận với 5 bài toán, thời gian làm bài 90 phút, không tính thời gian giám thì phát đề, đây là kỳ thi nhằm giúp giáo viên bộ môn Toán cũng như nhà trường nắm được chất lượng học tập môn Toán của học sinh khối lớp 8 trong suốt giai đoạn học kỳ 1 năm học 2018 – 2019 vừa qua.
20 đề ôn tập kiểm tra chất lượng học kỳ 1 Toán 8 phòng GD và ĐT thành phố Thái Bình
THCS. giới thiệu đến quý thầy, cô cùng các em tuyển tập 20 đề ôn tập kiểm tra chất lượng học kỳ 1 Toán 8 phòng GD và ĐT thành phố Thái Bình, tài liệu gồm 20 trang được chia sẻ bởi thầy Lương Tuấn Đức, các đề được biên soạn theo hình thức tự luận, mỗi đề gồm 5 bài toán, thời gian làm bài 90 phút (không kể thời gian phát đề), bộ đề nhằm giúp các em học sinh lớp 8 tự rèn luyện để chuẩn bị cho kỳ thi học kỳ 1 Toán 8 sắp tới. Trích dẫn tài liệu 20 đề ôn tập kiểm tra chất lượng học kỳ 1 Toán 8 phòng GD và ĐT thành phố Thái Bình : + Xét các khẳng định sau: (1) Tổng các góc một đa giác n cạnh trừ đi góc A của nó bằng 570 độ thì n = 6. (2) Không tồn tại đa giác có số đường chéo gấp đôi số cạnh. (3) Đa thức x^10 – 10x + 9 chia hết cho (x – 1)^2. Số lượng khẳng định đúng là? + Cho tam giác ABC cân tại A, từ một điểm D trên đáy BC vẽ đường thẳng vuông góc với BC, cắt các đường thẳng AB, AC theo thứ tự tại E, F. Vẽ các hình chữ nhật BDEH tâm I và CDFK tâm O. 1. Chứng minh AIDO là hình bình hành. 2. Chứng minh AHIO là hình bình hành. 3. Chứng minh H đối xứng với K qua A. + Khẳng định nào sau đây sai? A. Hình vuông có bốn trục đối xứng và một tâm đối xứng. B. Hình thoi có hai trục đối xứng và không có tâm đối xứng. C. Hình thang cân có hai góc kề một đáy bằng nhau và hai đường chéo bằng nhau. D. Công thức diện tích hình bình hành là S = a.h (h là chiều cao ứng với cạnh a).
Đề kiểm tra học kỳ 1 Toán 8 năm 2017 - 2018 phòng GDĐT Vĩnh Yên - Vĩnh Phúc
Đề kiểm tra học kỳ 1 Toán 8 năm 2017 – 2018 phòng GD&ĐT Vĩnh Yên – Vĩnh Phúc gồm 06 câu trắc nghiệm và 05 câu tự luận, thời gian học sinh làm bài thi là 90 phút, đề thi có đáp án + lời giải chi tiết.
Đề kiểm tra học kỳ 1 Toán 8 năm học 2017 - 2018 phòng GD và ĐT Vĩnh Tường - Vĩnh Phúc
Đề kiểm tra học kỳ 1 Toán 8 năm học 2017 – 2018 phòng GD và ĐT Vĩnh Tường – Vĩnh Phúc gồm 4 câu hỏi trắc nghiệm và 4 bài toán tự luận, thời gian làm bài 90 phút, đề thi có lời giải chi tiết . Trích dẫn đề kiểm tra học kỳ 1 Toán 8 : Cho tam giác ABC vuông tại A. Trên cạnh BC lấy điểm M bất kì. Gọi D, E lần lượt là chân đường vuông góc kẻ từ M xuống các cạnh AB và AC. a) Tứ giác ADME là hình gì? vì sao? b) Điểm M ở vị trí nào trên cạnh BC để tứ giác ADME là hình vuông? c) Gọi I là trung điểm đoạn thẳng BM và K là trung điểm đoạn thẳng CM và tứ giác DEKI là hình bình hành. Chứng minh rằng DE là đường trung bình tam giác ABC. Giải: a) Xét tứ giác ADME có: Góc DAE = 90 độ (vì tam giác ABC vuông tại A) Góc ADM = 90 độ (Vì MD ⊥ AB tại D) Góc AEM = 90 độ (Vì ME ⊥ AC tại E) Suy ra tứ giác ADME là hình chữ nhật. b) Để tứ giác ADME là hình vuông thì hình chữ nhật ADME có AM là tia phân giác của góc DAE, suy ra điểm M là giao điểm của đường phân giác góc BAC với cạnh BC của tam giác ABC. [ads] c) Theo giả thiết tứ giác DEKI là hình bình hành nên DI = EK, mà DI = 1/2.BM, EK = 1/2.CM (tính chất đường trung tuyến ứng với cạnh huyền trong tam giác vuông, áp dụng vào tam giác BDM vuông tại D, tam giác CEM vuông tại E) Do đó: BM = CM ⇒ M là trung điểm của BC (1) Lại có MD ⊥ AB và AC ⊥ AB nên MD // AC (2) Từ (1) và (2) suy ra D là trung điểm cạnh AB (*) Chứng minh tương tự ta có E là trung điểm cạnh AC (**) Từ (*) và (**) suy ra DE là đường trung bình tam giác ABC. (đpcm)