Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề học kỳ 2 Toán 10 năm 2022 - 2023 trường chuyên Vị Thanh - Hậu Giang

giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 10 đề kiểm tra cuối học kỳ 2 môn Toán 10 năm học 2022 – 2023 trường THPT chuyên Vị Thanh, tỉnh Hậu Giang; đề thi có đáp án và hướng dẫn chấm điểm. Trích dẫn Đề học kỳ 2 Toán 10 năm 2022 – 2023 trường chuyên Vị Thanh – Hậu Giang : + Giả sử một công việc có thể thực hiện theo một trong hai phương án khác nhau. Phương án một có m1 cách thực hiện; phương án hai có m2 cách thực hiện (không trùng với bất kì cách thực hiện nào của phương án một). Khi đó số cách thực hiện công việc sẽ là? + Một nhóm học sinh gồm 15 nam và 5 nữ. Người ta muốn chọn từ nhóm ra 5 người để lập thành một đội cờ đỏ sao cho phải có 1 đội trưởng nam, 1 đội phó nam và có ít nhất 1 nữ. Hỏi có bao nhiêu cách lập đội cờ đỏ? + Các thành phố A, B, C được nối với nhau bởi các con đường như hình vẽ. Hỏi có bao nhiêu cách đi từ thành phố A đến thành phố C mà qua thành phố B chỉ một lần?

Nguồn: toanmath.com

Đọc Sách

Đề thi học kì 2 Toán 10 năm 2019 - 2020 trường THPT An Nghĩa - TP HCM
Nhằm giúp các em học sinh lớp 10 ôn tập, chuẩn bị cho đợt kiểm tra cuối học kỳ 2 môn Toán lớp 10 sắp tới, giới thiệu đến các em đề thi học kì 2 Toán 10 năm học 2019 – 2020 trường THPT An Nghĩa, thành phố Hồ Chí Minh, đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn đề thi học kì 2 Toán 10 năm 2019 – 2020 trường THPT An Nghĩa – TP HCM : + Trong mặt phẳng Oxy, cho hai điểm M và N. Viết phương trình đường tròn C có đường kính MN. + Trong mặt phẳng Oxy, cho điểm I(1;2) và đường thẳng d. Viết phương trình đường tròn (C) có tâm I và tiếp xúc với đường thẳng d. + Chứng minh rằng (khi các biểu thức có nghĩa).
Đề thi học kì 2 Toán 10 năm 2019 - 2020 trường Quốc tế Á Châu - TP HCM
Nhằm giúp các em học sinh lớp 10 ôn tập, chuẩn bị cho đợt kiểm tra cuối học kỳ 2 môn Toán lớp 10 sắp tới, giới thiệu đến các em đề thi học kì 2 Toán 10 năm học 2019 – 2020 trường Quốc tế Á Châu, thành phố Hồ Chí Minh, đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn đề thi học kì 2 Toán 10 năm 2019 – 2020 trường Quốc tế Á Châu – TP HCM : + Cho tam giác ABC có BC = a, AC = b = 2, C = 30. Tính cạnh AB, góc A và diện tích tam giác ABC. + Trong mặt phẳng hệ trục tọa độ Oxy cho điểm A(2;-3), điểm B(1;2) và hai đường thẳng d1 và d2. a) Viết phương trình tổng quát của đường thẳng AB. b) Viết phương trình đường thẳng (d) đi qua A và song song với đường thẳng d1. c) Tìm tọa độ điểm M đối xứng với B qua d2. + Giải các bất phương trình sau.
Đề thi học kì 2 Toán 10 năm 2019 - 2020 trường THPT Đông Dương - TP HCM
Nhằm giúp các em học sinh lớp 10 ôn tập, chuẩn bị cho đợt kiểm tra cuối học kỳ 2 môn Toán lớp 10 sắp tới, giới thiệu đến các em đề thi học kì 2 Toán 10 năm học 2019 – 2020 trường THPT Đông Dương, thành phố Hồ Chí Minh, đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn đề thi học kì 2 Toán 10 năm 2019 – 2020 trường THPT Đông Dương – TP HCM : + Cho tam giác ABC có cạnh CB = 7cm, AC = 10cm, góc C có số đo 600. Tính cạnh AB, diện tích tam giác ABC và bán kính đường tròn ngoại tiếp tam giác ABC. + Cho phương trình bậc hai ẩn x, tham số m. Tìm giá trị của m để phương trình có hai nghiệm dương phân biệt. + Hai cung lượng giác khi biểu diễn trên đường tròn lượng giác thì có điểm cuối trùng nhau hay không? Vì sao?
Đề thi học kì 2 Toán 10 năm 2019 - 2020 trường THPT Thanh Đa - TP HCM
Nhằm giúp các em học sinh lớp 10 ôn tập, chuẩn bị cho đợt kiểm tra cuối học kỳ 2 môn Toán lớp 10 sắp tới, giới thiệu đến các em đề thi học kì 2 Toán 10 năm học 2019 – 2020 trường THPT Thanh Đa, thành phố Hồ Chí Minh, đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn đề thi học kì 2 Toán 10 năm 2019 – 2020 trường THPT Thanh Đa – TP HCM : + Trong mặt phẳng với hệ tọa độ Oxy, cho hai điểm N, M và đường thẳng d. a) Viết phương trình tham số của đường thẳng d. b) Viết phương trình tổng quát của đường thẳng MN. c) Viết phương trình đường thẳng d’ đi qua điểm N và vuông góc với d. d) Tính khoảng cách từ điểm N đến đường thẳng d. + Cho f(x) với m là tham số. Tìm tất cả các giá trị của tham số m để f(x) > 0. + Trong mặt phẳng với hệ tọa độ Oxy, cho đường tròn (C) có phương trình. Tìm tọa độ tâm I và tính bán kính R của đường tròn C.