Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Chuyên đề cung chứa góc

Tài liệu gồm 30 trang, được biên soạn bởi tác giả Toán Học Sơ Đồ, tổng hợp kiến thức trọng tâm, phân dạng và hướng dẫn giải các dạng bài tập tự luận & trắc nghiệm chuyên đề cung chứa góc, hỗ trợ học sinh trong quá trình học tập chương trình Hình học 9 chương 3 bài số 6. A. TRỌNG TÂM CẦN ĐẠT I. TÓM TẮT LÝ THUYẾT 1. Quỹ tích cung chứa góc. 2. Cách vẽ cung chứa góc a. 3. Cách giải bài toán quỹ tích. II. BÀI TẬP VÀ CÁC DẠNG TOÁN Dạng 1 . Quỹ tích là cung chứa góc a. Phương pháp giải: Thực hiện theo ba bước sau: + Bước 1. Tìm đoạn cố định trong hình vẽ. + Bước 2. Nối điểm phải tìm với hai đầu đoạn thẳng cố định đó, xác định góc a không đổi. + Bước 3. Khẳng định quỹ tích điểm phải tìm là cung chứa góc a dựng trên đoạn cố định. Dạng 2 . Chứng minh nhiều điểm thuộc đường tròn. Phương pháp giải: Chứng minh nhiều điểm cùng thuộc nửa mặt phẳng bờ là AB và cùng nhìn đoạn cố định AB dưới một góc không đổi. Dạng 3 . Dạng cung chứa góc. Phương pháp giải: Thực hiện theo bốn bước sau: + Bước 1. Vẽ đường trung trực d của đoạn thẳng AB. + Bước 2. Vẽ tia Ax tạo với AB một góc α. + Bước 3. Vẽ đường thẳng Ay vuông góc với Ax. Gọi O là giao điểm của Ay với d. + Bước 4. Vẽ cung AmB, tâm Om bán kính OA sao cho cung này nằm ở nửa mặt phẳng bờ AB không chứa tia Ax. Cung AmB được vẽ như trên là một cung chứa góc α. III. BÀI TẬP VỀ NHÀ B. NÂNG CAO PHÁT TRIỂN TƯ DUY C. TRẮC NGHIỆM RÈN LUYỆN PHẢN XẠ D. PHIẾU BÀI TỰ LUYỆN CƠ BẢN VÀ NÂNG CAO

Nguồn: toanmath.com

Đọc Sách

Chuyên đề liên hệ giữa phép nhân - phép chia và phép khai phương
Tài liệu gồm 37 trang, được biên soạn bởi tác giả Toán Học Sơ Đồ, tổng hợp kiến thức trọng tâm, phân dạng và hướng dẫn giải các dạng bài tập tự luận & trắc nghiệm chuyên đề liên hệ giữa phép nhân và phép khai phương, liên hệ giữa phép chia và phép khai phương, hỗ trợ học sinh trong quá trình học tập chương trình Đại số 9 chương 1 bài số 3 – 4. A. KIẾN THỨC TRỌNG TÂM B. CÁC DẠNG TOÁN + Dạng toán 1. Thực hiện phép tính. + Dạng toán 2. Rút gọn biểu thức và tính giá trị biểu thức. + Dạng toán 3. Giải phương trình. + Dạng toán 4. Nâng cao phát triển tư duy. C. TRẮC NGHIỆM RÈN PHẢN XẠ CÁC DẠNG
Chuyên đề nhắc lại và bổ sung các khái niệm về hàm số
Tài liệu gồm 18 trang, được biên soạn bởi tác giả Toán Học Sơ Đồ, tổng hợp kiến thức trọng tâm, phân dạng và hướng dẫn giải các dạng bài tập tự luận & trắc nghiệm chuyên đề nhắc lại và bổ sung các khái niệm về hàm số, hỗ trợ học sinh trong quá trình học tập chương trình Đại số 9 chương 2 bài số 1. A. KIẾN THỨC CẦN NHỚ 1. Khái niệm hàm số. Nếu đại lượng y phụ thuộc vào đại lượng x thay đổi sao cho với mỗi giá trị của x, ta luôn xác định được chỉ một giá trị tương ứng của y thì y được gọi là hàm số của x (x gọi là biến số). 2. Giá trị của hàm số, điều kiện xác định của hàm số. Giá trị của hàm số f(x) tại điểm x0 kí hiệu là y0 = f(x0). Điều kiện xác định của hàm số y = f(x) là tất cả các giá trị của x sao cho biểu thức f(x) có nghĩa. 3. Đồ thị của hàm số. Đồ thị của hàm số y = f(x) là tập hợp tất cả các điểm M(x;y) trong mặt phẳng tọa độ Oxy sao cho x, y thỏa mãn hệ thức y = f(x). 4. Hàm số đồng biến và hàm số nghịch biến. Cho hàm số y = f(x) xác định với mọi giá trị x thuộc R. Nếu giá trị của biến x tăng lên mà giá trị y = f(x) tương ứng cũng tăng lên thì hàm số y = f(x) được gọi là đồng biến trên R. Nếu giá trị của biến x tăng lên mà giá trị y = f(x) tương ứng lại giảm đi thì hàm số y = f(x) được gọi là nghịch biến trên R. B. CÁC DẠNG BÀI CƠ BẢN VÀ NÂNG CAO Dạng 1. Tính giá trị của hàm số tại một điểm. Dạng 2. Biểu diễn tọa độ của một điểm trên mặt phẳng tọa độ Oxy. Dạng 3. Xét sự đồng biến và nghịch biến của hàm số. Dạng 4. Nâng cao và phát triển tư duy. C. TỰ LUYỆN D. TRẮC NGHIỆM RÈN LUYỆN PHẢN XẠ
Chuyên đề căn bậc hai, căn thức bậc hai và hằng đẳng thức $sqrt A2 left A right$
Tài liệu gồm 46 trang, được biên soạn bởi tác giả Toán Học Sơ Đồ, tổng hợp kiến thức trọng tâm, phân dạng và hướng dẫn giải các dạng bài tập tự luận & trắc nghiệm chuyên đề căn bậc hai, căn thức bậc hai và hằng đẳng thức $\sqrt {{A^2}} = \left| A \right|$, hỗ trợ học sinh trong quá trình học tập chương trình Đại số 9 chương 1 bài số 1 – 2. A. KIẾN THỨC TRỌNG TÂM I. Căn bậc hai số học. II. Căn thức bậc hai. B. BÀI TẬP MINH HỌA I. BÀI TẬP VÀ CÁC DẠNG BÀI TỰ LUẬN. Dạng toán 1. Tìm điều kiện để biểu thức chứa căn bậc hai có nghĩa. Dạng toán 2. Tính giá trị biểu thức chứa căn bậc hai. Dạng toán 3. Rút gọn biểu thức chứa căn bậc hai. Dạng toán 4. Giải phương trình chứa căn bậc hai. Dạng toán 5. Bài toán nâng cao. II. TRẮC NGHIỆM RÈN LUYỆN PHẢN XẠ. III. TỰ LUYỆN. Dạng toán 1. Tính giá trị của biểu thức chứa căn bậc hai. Dạng toán 2. Tìm điều kiện để biểu thức chứa căn bậc hai có nghĩa. Dạng toán 3. Rút gọn biểu thức chứa căn bậc hai. Dạng toán 4. So sánh hai biểu thức chứa căn bậc hai. Dạng toán 5. Phân tích đa thức thành nhân tử. Dạng toán 6. Giải phương trình chứa căn bậc hai.
Chuyên đề hình học không gian Toán 9 Hình trụ - Hình nón - Hình cầu
Tài liệu gồm 30 trang, hướng dẫn phương pháp giải các dạng toán hình học không gian Toán 9: Hình trụ – Hình nón – Hình cầu, giúp học sinh học tốt chương trình Hình học 9 và ôn thi tuyển sinh vào lớp 10 môn Toán. CHỦ ĐỀ 1. HÌNH TRỤ. I. Lý thuyết. 1. Hình trụ. 2. Cắt hình trụ. 3. Diện tích xung quanh của hình trụ. 4. Thể tích hình trụ. II. Bài tập. CHỦ ĐỀ 2. HÌNH NÓN. I. Lý thuyết. 1. Hình nón. 2. Diện tích xung quanh của hình nón. 3. Thể tích hình nón. 4. Hình nón cụt. 5. Diện tích xung quanh và thể tích hình nón cụt. II. Bài tập. CHỦ ĐỀ 3. HÌNH CẦU. I. Lý thuyết. 1. Hình cầu. 2. Cắt hình cầu. 3. Diện tích mặt cầu. 4. Thể tích hình cầu. II. Bài tập. BÀI TẬP TỔNG HỢP.