Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề HSG huyện Toán 9 vòng 1 năm 2022 - 2023 phòng GDĐT Quỳ Hợp - Nghệ An

THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi cấp huyện môn Toán 9 vòng 1 năm học 2022 – 2023 phòng Giáo dục và Đào tạo UBND huyện Quỳ Hợp, tỉnh Nghệ An. Trích dẫn Đề HSG huyện Toán 9 vòng 1 năm 2022 – 2023 phòng GD&ĐT Quỳ Hợp – Nghệ An : + Chứng minh rằng nếu tổng của hai số nguyên chia hết cho 3 thì tổng các lập phương của chúng chia hết cho 9. + Cho tam giác ABC nhọn. Các đường cao AD, BE và CF cắt nhau tại H. a. Chứng minh CA.CE = CB.CD b. Chứng minh sin BAC = AD.BC/AB.AC c. Gọi G là trọng tâm của tam giác ABC. Cho biết tanB.tanC = 3. Chứng minh rằng HG // BC. + Để chào mừng kỉ niệm 40 năm ngày nhà giáo Việt Nam 20/11/1982 – 20/11/2022. Phòng Giáo dục và Đào tạo Huyện Quỳ Hợp tổ chức một giải bóng chuyền Nam có 7 đội bóng tham gia thi đấu vòng tròn 1 lượt (hai đội bất kỳ chỉ thi đấu với nhau 1 trận). Biết đội thứ nhất thắng a1 trận và thua b1 trận, đội thứ 2 thắng a2 trận và thua b2 trận, …, đội thứ 7 thắng a7 trận và thua b7 trận. Chứng minh rằng a12 + a22 + a32 + … + a72 = b12 + b22 + b38 + … + b72.

Nguồn: toanmath.com

Đọc Sách

Đề thi chọn học sinh giỏi Toán 9 năm 2021 - 2022 sở GDĐT Vĩnh Phúc
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề thi chọn học sinh giỏi Toán 9 năm 2021 – 2022 sở GD&ĐT Vĩnh Phúc.
Đề thi học sinh giỏi Toán THCS năm 2021 - 2022 phòng GDĐT thành phố Sơn La
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề thi học sinh giỏi Toán THCS năm 2021 – 2022 phòng GD&ĐT thành phố Sơn La; kỳ thi được diễn ra vào ngày 07 tháng 01 năm 2022.
Đề thi HSG Toán THCS năm 2021 - 2022 phòng GDĐT huyện Thuận Châu - Sơn La
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề thi HSG Toán THCS năm 2021 – 2022 phòng GD&ĐT huyện Thuận Châu – Sơn La.
Đề thi chọn HSG huyện Toán 9 năm 2021 - 2022 phòng GDĐT Sơn Hòa - Phú Yên
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi cấp huyện môn Toán lớp 9 năm học 2021 – 2022 phòng Giáo dục và Đào tạo huyện Sơn Hòa, tỉnh Phú Yên; kỳ thi được diễn ra vào thứ Ba ngày 04 tháng 01 năm 2022. Trích dẫn đề thi chọn HSG huyện Toán 9 năm 2021 – 2022 phòng GD&ĐT Sơn Hòa – Phú Yên : + Chứng minh rằng với mọi số tự nhiên n thì n2 + 12n + 2022 không thể là số chính phương. + Cho tam giác ABC vuông tại A, đường cao AH. a) Tính AH, BH biết BC = 50 cm và AB/AC = 3/4. b) Gọi D và E lần lượt là hình chiếu của H trên AB và AC. Chứng minh rằng: AH3 = BC.BD.CE. c) Giả sử BC = 2a là độ dài cố định. Hỏi tam giác vuông ABC có thêm điều kiện gì để BD2 + CE2 đạt giá trị nhỏ nhất. Tính giá trị nhỏ nhất của BD2 + CE2. + Cho hai số dương a và b thỏa mãn. Tìm giá trị nhỏ nhất của biểu thức Q = 1/a + 1/b.