Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Phân tích đa thức thành nhân tử bằng cách phối hợp nhiều phương pháp

Nội dung Phân tích đa thức thành nhân tử bằng cách phối hợp nhiều phương pháp Bản PDF - Nội dung bài viết Phân tích đa thức thành nhân tử bằng cách phối hợp nhiều phương pháp Phân tích đa thức thành nhân tử bằng cách phối hợp nhiều phương pháp Trên thực tế, khi chúng ta phân tích đa thức thành nhân tử, đôi khi cần phải kết hợp nhiều phương pháp để có thể phân tích triệt để. Có nhiều phương pháp thông thường mà chúng ta có thể áp dụng, bao gồm: Phương pháp ưu tiên số một: Đặt nhân tử chung. Khi sử dụng phương pháp này, chúng ta cố gắng tìm một nhân tử chung cho các hạng tử của đa thức để dễ dàng phân tích. Phương pháp ưu tiên số hai: Sử dụng hằng đẳng thức. Chúng ta có thể sử dụng hằng đẳng thức để phân tích đa thức thành nhân tử, giúp quá trình phân tích trở nên hiệu quả hơn. Nhóm các hạng tử. Khi chúng ta nhóm các hạng tử lại với nhau, việc phân tích trở nên dễ dàng hơn bằng cách đặt nhân tử chung hoặc sử dụng hằng đẳng thức. Ngoài ra, chúng ta cũng có thể áp dụng các phương pháp nâng cao khác như: Tách một hạng tử thành nhiều hạng tử. Bằng cách này, chúng ta có thể tách một hạng tử thành nhiều hạng tử để dễ dàng phân tích đa thức thành nhân tử. Thêm và bớt cùng một hạng tử. Đôi khi, chúng ta cần tăng thêm hoặc bớt đi các hạng tử để phân tích đa thức, giúp quá trình phân tích trở nên linh hoạt hơn. Đổi biến. Khi gặp đa thức phức tạp, chúng ta có thể sử dụng cách đổi biến để đơn giản hóa đa thức trước khi phân tích thành nhân tử. Thông qua việc kết hợp các phương pháp phân tích, chúng ta có thể giải quyết các bài toán phức tạp và hiệu quả hơn trong quá trình học Toán lớp 8.

Nguồn: sytu.vn

Đọc Sách

Lý thuyết, các dạng toán và bài tập tam giác đồng dạng
Tài liệu gồm 48 trang, tóm tắt lý thuyết, các dạng toán và bài tập tam giác đồng dạng, giúp học sinh lớp 8 tham khảo khi học chương trình Toán 8 (tập 2) phần Hình học chương 3. Bài 1. Định lí Ta-lét trong tam giác. + Dạng 1. Tính toán, chứng minh về tỉ số của hai đoạn thẳng và đoạn thẳng tỉ lệ. + Dạng 2. Sử dụng định lí Ta-lét để tính độ dài đoạn thẳng. + Dạng 3. Sử dụng định lí Ta-lét để chứng minh các hệ thức. Bài 2. Định lí đảo và hệ quả của định lí Ta-lét. + Dạng 1. Sử dụng hệ quả của định lí Ta-lét để tính độ dài đoạn thẳng. + Dạng 2. Sử dụng hệ quả của định lí Ta-lét để chứng minh các hệ thức. + Dạng 3. Sử dụng định lí Ta-lét đảo để chứng minh hai đường thẳng song song. + Dạng 4. Phối hợp định lí Ta-lét thuận và đảo. + Dạng 5. Áp dụng vào toán dựng hình. Trong bốn đoạn thẳng tỉ lệ, dựng đoạn thẳng thứ tư khi biết độ dài ba đoạn kia. Bài 3. Tính chất đường phân giác của tam giác. + Dạng 1. Vận dụng tính chất đường phân giác của tam giác để tính độ dài đoạn thẳng. + Dạng 2. Vận dụng tính chất đường phân giác của tam giác để tính tỉ số độ dài hai đoạn thẳng. + Dạng 3. Đường phân giác ngoài của tam giác. Bài 4. Khái niệm hai tam giác đồng dạng. + Dạng 1. Vẽ tam giác đồng dạng với một tam giác cho trước. + Dạng 2. Tính chất hai tam giác đồng dạng. + Dạng 3. Chứng minh hai tam giác đồng dạng. Bài 5. Trường hợp đồng dạng thứ nhất. + Dạng 1. Nhận biết hai tam giác đồng dạng theo trường hợp thứ nhất. + Dạng 2. Sử dụng trường hợp đồng dạng thứ nhất để chứng minh các góc bằng nhau. Bài 6. Trường hợp đồng dạng thứ hai. + Dạng 1. Nhận biết hai tam giác đồng dạng theo trường hợp thứ hai để tính độ dài đoạn thẳng, chứng minh hai góc bằng nhau. + Dạng 2. Sử dụng các tam giác đồng dạng để dựng hình. Bài 7. Trường hợp đồng dạng thứ ba. + Dạng 1. Nhận biết hai tam giác đồng dạng theo trường hợp thứ ba để tính đồ dài hai đoạn thẳng. + Dạng 2. Nhận biết hai tam giác vuông đồng dạng theo trường hợp thứ ba. + Dạng 3. Sử dụng tam giác đồng dạng để dựng hình. Bài 8. Các trường hợp đồng dạng của tam giác vuông. + Dạng 1. Các trường hợp đồng dạng của tam giác vuông suy từ các trường hợp đồng dạng của tam giác. + Dạng 2. Trường hợp đồng dạng cạnh huyền – cạnh góc vuông. + Dạng 3. Tỉ số hai đường cao của hai tam giác đồng dạng. Bài 9. Ứng dụng thực tế của tam giác đồng dạng. + Dạng 1. Đo gián tiếp chiều cao. + Dạng 2. Đo gián tiếp khoảng cách, bề dày. Ôn tập chương III. A. Bài tập ôn trong SGK. B. Bài tập bổ sung.
Lý thuyết, các dạng toán và bài tập bất phương trình bậc nhất một ẩn
Tài liệu gồm 37 trang, tóm tắt lý thuyết, các dạng toán và bài tập bất phương trình bậc nhất một ẩn, giúp học sinh lớp 8 tham khảo khi học chương trình Toán 8 (tập 2) phần Đại số chương 4. Bài 1. Liên hệ giữa thứ tự và phép cộng. Bài 2. Liên hệ giữa thứ tự và phép nhân. + Dạng 1. Biểu thị thứ tự các số. + Dạng 2. So sánh hai phân số. + Dạng 3. Chứng minh bất đẳng thức. + Dạng 4. Sử dụng phương pháp làm trội để chứng minh bất đẳng thức. + Dạng 5. Áp dụng bất đẳng thức để tìm giá trị nhỏ nhất, giá trị lớn nhất. Bài 3. Bất phương trình một ẩn. + Dạng 1. Kiểm tra x = a có là nghiệm của bất phương trình không? + Dạng 2. Biểu diễn tập nghiệm bất phương trình. + Dạng 3. Lập bất phương trình. + Dạng 4. Chứng minh bất phương trình có nghiệm với mọi giá trị của ẩn số x. Bài 4. Bất phương trình bậc nhất một ẩn. + Dạng 1. Kiểm tra x = a có là nghiệm của bất phương trình không? + Dạng 2. Giải bất phương trình. + Dạng 3. Biểu diễn tập nghiệm trên trục số. + Dạng 4. Bất phương trình tương đương. + Dạng 5. Bất phương trình. Bài 5. Phương trình chứa dấu giá trị tuyệt đối. + Dạng 1. Phương trình chứa dấu giá trị tuyệt đối. + Dạng 2. Bất phương trình chứa dấu giá trị tuyệt đối. Ôn tập chương IV. A. Bài tập ôn trong SGK. B. Bài tập bổ sung.
Lý thuyết, các dạng toán và bài tập phương trình bậc nhất một ẩn
Tài liệu gồm 43 trang, tóm tắt lý thuyết, các dạng toán và bài tập phương trình bậc nhất một ẩn, giúp học sinh lớp 8 tham khảo khi học chương trình Toán 8 (tập 2) phần Đại số chương 3. Bài 1. Mở đầu về phương trình. Bài 2. Phương trình bậc nhất một ẩn và cách giải. + Dạng 1. Xét xem x = a có là nghiệm của phương trình không? + Dạng 2. Xét hai phương trình có tương đương nhau không? + Dạng 3. Nhận dạng phương trình bậc nhất một ẩn số. + Dạng 4. Giải phương trình bậc nhất. Bài 3. Phương trình đưa được về dạng ax + b = 0. + Dạng 1. Tìm chỗ sai và sửa lại các bài giảng phương trình. + Dạng 2. Giải phương trình. + Dạng 3. Giải bài toán bằng cách lập phương trình. Bài 4. Phương trình tích. + Dạng 1. Phương trình dạng a(x).b(x) = 0. + Dạng 2. Phương trình đưa về dạng phương trình tích. Bài 5. Phương trình chứa ẩn ở mẫu. + Dạng 1. Tìm chỗ sai và sửa lại các bài giải phương trình. + Dạng 2. Giải phương trình có chứa ẩn ở mẫu. + Dạng 3. Xác định giá trị của a để biểu thức có giá trị bằng hằng số k cho trước. Bài 6 – Bài 7. Giải bài toán bằng cách lập phương trình. + Dạng 1. Toán về tỉ số và quan hệ giữa các số. + Dạng 2. Toán chuyển động. + Dạng 3. Toán về công việc. + Dạng 4. Toán làm chung công việc. Ôn tập chương III. A. Bài tập ôn trong SGK. B. Bài tập ôn bổ sung.
Lý thuyết, các dạng toán và bài tập đa giác và diện tích đa giác
Tài liệu gồm 33 trang, tóm tắt lý thuyết, các dạng toán và bài tập đa giác và diện tích đa giác, giúp học sinh lớp 8 tham khảo khi học chương trình Toán 8 (tập 1) phần Hình học chương 2. Bài 1. Đa giác và đa giác đều. + Dạng 1. Nhận biết đa giác. + Dạng 2. Tính chất về góc của đa giác. + Dạng 3. Tính chất về số đường chéo của đa giác. + Dạng 4. Đa giác đều. Bài 2. Diện tích hình chữ nhật. + Dạng 1. Tính chất diện tích đa giác. + Dạng 2. Tính diện tích hình chữ nhật. + Dạng 3. Diện tích hình vuông. + Dạng 4. Diện tích tam giác vuông. Bài 3. Diện tích tam giác. + Dạng 1. Cắt và ghép hình. Giải thích công thức tính diện tích tam giác. + Dạng 2. Tính toán, chứng minh về diện tích tam giác. + Dạng 3. Tính độ dài đoạn thẳng bằng cách sử dụng công thức tính diện tích tam giác. + Dạng 4. Sử dụng công thức diện tích để chứng minh các hệ thức. + Dạng 5. Tìm vị trí của điểm để thỏa mãn một đẳng thức về diện tích. + Dạng 6. Tìm diện tích lớn nhất (nhỏ nhất) của một hình. Bài 4. Diện tích hình thang. + Dạng 1. Tính diện tích hình thang. + Dạng 2. Tính diện tích hình bình hành. + Dạng 3. Tìm diện tích lớn nhất (nhỏ nhất) của một hình. Bài 5. Diện tích hình thoi. + Dạng 1. Tính diện tích tứ giác có hai đường chéo vuông góc. + Dạng 2. Tính diện tích hình thoi. + Dạng 3. Tìm diện tích lớn nhất(nhỏ nhất) của một hình. Bài 6. Diện tích đa giác. + Dạng 1. Tính diện tích đa giác. + Dạng 2. Dựng tam giác có diện tích bằng diện tích của một đa giác.