Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Phân tích đa thức thành nhân tử bằng cách phối hợp nhiều phương pháp

Nội dung Phân tích đa thức thành nhân tử bằng cách phối hợp nhiều phương pháp Bản PDF - Nội dung bài viết Phân tích đa thức thành nhân tử bằng cách phối hợp nhiều phương pháp Phân tích đa thức thành nhân tử bằng cách phối hợp nhiều phương pháp Trên thực tế, khi chúng ta phân tích đa thức thành nhân tử, đôi khi cần phải kết hợp nhiều phương pháp để có thể phân tích triệt để. Có nhiều phương pháp thông thường mà chúng ta có thể áp dụng, bao gồm: Phương pháp ưu tiên số một: Đặt nhân tử chung. Khi sử dụng phương pháp này, chúng ta cố gắng tìm một nhân tử chung cho các hạng tử của đa thức để dễ dàng phân tích. Phương pháp ưu tiên số hai: Sử dụng hằng đẳng thức. Chúng ta có thể sử dụng hằng đẳng thức để phân tích đa thức thành nhân tử, giúp quá trình phân tích trở nên hiệu quả hơn. Nhóm các hạng tử. Khi chúng ta nhóm các hạng tử lại với nhau, việc phân tích trở nên dễ dàng hơn bằng cách đặt nhân tử chung hoặc sử dụng hằng đẳng thức. Ngoài ra, chúng ta cũng có thể áp dụng các phương pháp nâng cao khác như: Tách một hạng tử thành nhiều hạng tử. Bằng cách này, chúng ta có thể tách một hạng tử thành nhiều hạng tử để dễ dàng phân tích đa thức thành nhân tử. Thêm và bớt cùng một hạng tử. Đôi khi, chúng ta cần tăng thêm hoặc bớt đi các hạng tử để phân tích đa thức, giúp quá trình phân tích trở nên linh hoạt hơn. Đổi biến. Khi gặp đa thức phức tạp, chúng ta có thể sử dụng cách đổi biến để đơn giản hóa đa thức trước khi phân tích thành nhân tử. Thông qua việc kết hợp các phương pháp phân tích, chúng ta có thể giải quyết các bài toán phức tạp và hiệu quả hơn trong quá trình học Toán lớp 8.

Nguồn: sytu.vn

Đọc Sách

Chuyên đề hình hộp chữ nhật
Tài liệu gồm 12 trang, tóm tắt lý thuyết trọng tâm cần đạt, phân dạng và hướng dẫn giải các dạng toán, tuyển chọn các bài tập từ cơ bản đến nâng cao chuyên đề hình hộp chữ nhật, có đáp án và lời giải chi tiết, hỗ trợ học sinh trong quá trình học tập chương trình Hình học 8 chương 4: Hình lăng trụ đứng, hình chóp đều. A. Bài giảng củng cố kiến thức nền 1. Hình hộp chữ nhật. 2. Mặt phẳng và đường thẳng. 3. Hai đường thẳng song song trong không gian. 4. Đường thẳng song song với mặt phẳng. Hai mặt phẳng song song. B. Phương pháp giải toán Dạng toán 1: Chứng minh các tính chất của hình hộp chữ nhật. Dạng toán 2: Tính toán các yếu tố của hình hộp chữ nhật.
Hướng dẫn ôn tập giữa kì 2 Toán 8 năm 2020 - 2021 trường Vinschool - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo cùng các em học sinh lớp 8 đề cương hướng dẫn ôn tập giữa kì 2 Toán 8 năm học 2020 – 2021 trường Vinschool – Hà Nội, nhằm giúp các em rèn luyện, chuẩn bị cho kỳ kiểm tra khảo sát chất lượng môn Toán 8 giai đoạn giữa học kỳ 2 năm học 2020 – 2021. I. KIẾN THỨC TRỌNG TÂM Phương trình bậc nhất một ẩn: – Phương trình một ẩn, nghiệm của phương trình, giải phương trình, phương trình tương đương. – Phương trình bậc nhất một ẩn và cách giải. – Phương trình đưa được về dạng ax + b = 0. – Phương trình tích. – Phương trình chứa ẩn ở mẫu (dạng toán chuyển động, dạng toán có nội dung số học, dạng toán năng suất, dạng toán có nội dung hình học). Định lý Ta let – Tính chất đường phân giác của tam giác: – Định lý Talet thuận và đảo. – Hệ quả định lý Talet. – Tính chất đường phân giác của tam giác. Tam giác đồng dạng: – Khái niệm hai tam giác đồng dạng. – Các trường hợp đồng dạng của tam giác. II. BÀI TẬP TỰ LUẬN Dạng 1. Giải phương trình. Dạng 2. Giải toán bằng cách lập phương trình. Dạng 3. Hình học tổng hợp. Dạng 4. Nâng cao.
Chuyên đề các trường hợp đồng dạng của tam giác vuông
Tài liệu gồm 15 trang, tóm tắt lý thuyết trọng tâm cần đạt, phân dạng và hướng dẫn giải các dạng toán, tuyển chọn các bài tập từ cơ bản đến nâng cao chuyên đề các trường hợp đồng dạng của tam giác vuông, có đáp án và lời giải chi tiết, hỗ trợ học sinh trong quá trình học tập chương trình Hình học 8 chương 3: Tam giác đồng dạng. I. TÓM TẮT LÝ THUYẾT 1. Áp dụng các trường hợp đồng dạng của tam giác vào tam giác vuông. Hai tam giác vuông đồng dạng với nhau nếu: + Tam giác vuông này có một góc nhọn bằng góc nhọn của tam giác vuông kia. + Tam giác vuông này có hai cạnh góc vuông tỉ lệ với hai cạnh góc vuông của tam giác vuông kia. 2. Dấu hiệu đặc biệt nhận biết hai tam giác vuông đồng dạng. Nếu cạnh huyền và một cạnh góc vuông của tam giác vuông này tỉ lệ với cạnh huyền và cạnh góc vuông của tam giác vuông kia thì hai tam giác vuông đó đồng dạng. 3. Tỉ số hai đường cao, trung tuyến, phân giác của hai tam giác đồng dạng. + Tỉ số hai đường cao tương ứng của hai tam giác đồng dạng bằng tỉ số đồng dạng. + Tỉ số hai đường trung tuyến tương ứng của hai tam giác đồng dạng bằng tỉ số đồng dạng. + Tỉ số hai đường phân giác tương ứng của hai tam giác đồng dạng bằng tỉ số đồng dạng. 4. Tỉ số diện tích của hai tam giác đồng dạng. Tỉ số diện tích của hai tam giác đồng dạng bằng bình phương tỉ số đồng dạng. II. BÀI TẬP VÀ CÁC DẠNG TOÁN Dạng 1 . Chứng minh hai tam giác vuông đồng dạng. Phương pháp giải: Có thể sử dụng một trong các cách sau: + Cách 1: Áp dụng trường hợp đồng dạng của hai tam giác thường vào tam giác vuông. + Cách 2: Sử dụng đặc biệt nhận biết hai tam giác vuông đồng dạng. Dạng 2 . Sử dụng trường hợp đồng dạng của tam giác vuông để giải toán. Phương pháp giải: Sử dụng các trường hợp đồng dạng của hai tam giác vuông (nếu cần) để chứng minh hai tam giác đồng dạng, từ đó suy ra các cặp góc tương ứng bằng nhau hoặc cặp cạnh tương ứng tỉ lệ, từ đo suy ra điều cần chứng minh. Dạng 3 . Tỉ số diện tích của hai tam giác. Phương pháp giải: Sử dụng định lý tỉ số diện tích của hai tam giác đồng dạng bằng bình phương tỉ số đồng dạng.
Chuyên đề trường hợp đồng dạng thứ ba
Tài liệu gồm 15 trang, tóm tắt lý thuyết trọng tâm cần đạt, phân dạng và hướng dẫn giải các dạng toán, tuyển chọn các bài tập từ cơ bản đến nâng cao chuyên đề trường hợp đồng dạng thứ ba, có đáp án và lời giải chi tiết, hỗ trợ học sinh trong quá trình học tập chương trình Hình học 8 chương 3: Tam giác đồng dạng. I. TÓM TẮT LÝ THUYẾT II. BÀI TẬP VÀ CÁC DẠNG TOÁN Dạng 1. Chứng minh hai tam giác đồng dạng. Phương pháp giải: Chỉ ra hai cặp góc tương ứng bằng nhau trong hai tam giác để suy ra hai tam giác đồng dạng. Dạng 2. Sử dụng các trường hợp đồng dạng thứ ba để tính độ dài các cạnh, chứng minh hệ thức cạnh hoặc chứng minh các góc bằng nhau. Phương pháp giải: Sử dụng trường hợp đồng dạng thứ ba (nếu cần) để chứng minh hai tam giác đồng dạng, từ đó suy ra các cặp góc tương ứng bằng nhau hoặc cặp cạnh tương ứng tỉ lệ.