Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi thử THPT 2020 môn Toán lần 3 trường chuyên Quang Trung - Bình Phước

Thứ Năm ngày 02 tháng 07 năm 2020, trường THPT chuyên Quang Trung, thành phố Đồng Xoài, tỉnh Bình Phước tổ chức kỳ thi thử tốt nghiệp Trung học Phổ thông môn Toán năm học 2019 – 2020 lần thi thứ ba. Đề thi thử THPT 2020 môn Toán lần 3 trường THPT chuyên Quang Trung – Bình Phước mã đề 111 gồm 06 trang với 50 câu hỏi và bài toán dạng trắc nghiệm, thời gian làm bài 90 phút, đề thi có đáp án. Trích dẫn đề thi thử THPT 2020 môn Toán lần 3 trường THPT chuyên Quang Trung – Bình Phước : + Trên mỗi chiếc radio đều có vạch chia để người sử dụng dễ chọn được đúng sóng radio cần tìm. Biết rằng vạch chia ở vị trí cách vạch tận cùng bên trái một khoảng d (cm) thì ứng với tần số F = kad (kHz), trong đó k và a là hai hằng số được chọn sao cho vạch tận cùng bên trái ứng với tần số 53 (kHz), vạch tận cùng bên phải ứng với tần số 160 (kHz) và hai vạch này cách nhau 12 (cm). Người đó muốn mở chương trình ca nhạc có tần số là F = 120 (kHz) thì cần điều chỉnh đến vạch chia cách vị trí tận cùng bên trái một khoảng gần với số nào sau đây? [ads] + Cho hình trụ (H) có chiều cao bằng 2a và hai đáy là (O) và (O0). Trên đường tròn (O) có hai điểm A, B và trên đường tròn (O0) có hai điểm C, D sao cho ABCD là hình vuông và mặt phẳng (ABCD) tạo với đáy một góc 45◦. Tính thể tích khối trụ theo a. + Cho x, y là hai số thực, với y ≥ 0, thỏa mãn x2 + y2 = 1. Gọi m, M lần lượt là giá trị nhỏ nhất và lớn nhất của biểu thức P = 2x + 2y. Khi đó tổng m + M có dạng b/a + 2^(1+1/√a), với a, b nguyên dương, nguyên tố cùng nhau. Tính a + 2b.

Nguồn: toanmath.com

Đọc Sách

Đề thi thử tốt nghiệp THPT năm 2022 môn Toán sở GDĐT Kiên Giang
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi thử tốt nghiệp THPT năm 2022 môn Toán sở Giáo dục và Đào tạo tỉnh Kiên Giang (mã đề 003); kỳ thi được diễn ra vào ngày 26 tháng 05 năm 2022. Trích dẫn đề thi thử tốt nghiệp THPT năm 2022 môn Toán sở GD&ĐT Kiên Giang : + Trong không gian Oxyz, cho mặt cầu (S): x2 + y2 + z2 = 9, điểm M(1;1;2) và mặt phẳng (P): x + y + z – 4 = 0. Gọi d là đường thẳng đi qua M, thuộc (P) và cắt (S) tại hai điểm A, B sao cho độ dài đoạn thẳng AB nhỏ nhất. Biết rằng d có một vectơ chỉ phương là u = (1;a;b). Giá trị của 5a + 3b bằng? + Cho hai số phức z và w. Biết rằng số phức z có phần thực và phần ảo đều khác 0 và thỏa mãn là số thực. Số phức w thỏa mãn. Giá trị nhỏ nhất của P = |z + w + 1 + 2i| bằng? + Cho hàm số y = f(x) liên tục, có đạo hàm trên R và thỏa mãn. Biết f(0) = 2. Tính thể tích khối tròn xoay do hình phẳng giới hạn bởi các đường y = f(x), trục hoành và hai đường thẳng x = 0 và x = 1 quay quanh trục Ox.
Đề thi thử tốt nghiệp THPT năm 2022 môn Toán sở GDĐT Gia Lai
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi thử tốt nghiệp THPT năm 2022 môn Toán sở Giáo dục và Đào tạo tỉnh Gia Lai (mã đề 101). Trích dẫn đề thi thử tốt nghiệp THPT năm 2022 môn Toán sở GD&ĐT Gia Lai : + Trong không gian Oxyz, cho điểm A(-1;1;-1) và mặt cầu (S): (x − 1)2 + (y − 2)2 + (z + 3)2 = 25. Mặt phẳng (P) đi qua A và cắt (S) theo giao tuyến là đường tròn (C). Gọi (M) là khối nón có đỉnh là tâm của mặt cầu và đáy là hình tròn giới hạn bởi (C). Tính bán kính của (C) khi thể tích của khối nón (V) đạt giá trị lớn nhất. + Cho hình chóp tứ giác đều S.ABCD có cạnh đáy bằng 2a. Mặt phẳng (a) chứa đường thẳng AB và đi qua trung điểm M của cạnh SC và cắt hình chóp theo thiết diện là một hình đa giác có chu vi bằng 7a. Tính thể tích của khối nón có đỉnh S và đáy là hình tròn giới hạn bởi đường tròn ngoại tiếp của tứ giác ABCD. + Cho hai hàm số y = f(x) = ax3 + bx2 + cx – 1/2 và y = g(x) = dx2 + ex + 1 trong đó a b c d e là những số thực. Biết rằng hai đồ thị đó cắt nhau tại các điểm có hoành độ lần lượt bằng -3; -1; 2 (tham khảo hình vẽ bên). Diện tích hình phẳng giới hạn bởi hai đường y = f(x) và y = g(x) bằng?
Đề thi thử tốt nghiệp THPT năm 2022 môn Toán sở GDĐT Cà Mau
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi thử tốt nghiệp THPT năm 2022 môn Toán sở Giáo dục và Đào tạo tỉnh Cà Mau; kỳ thi được diễn ra vào ngày 19 tháng 05 năm 2022; đề thi có đáp án mã đề 101 105 109 113 117 121 102 106 110 114 118 122 103 107 111 115 119 123 104 108 112 116 120 124. Trích dẫn đề thi thử tốt nghiệp THPT năm 2022 môn Toán sở GD&ĐT Cà Mau : + Trong không gian Oxyz cho mặt cầu (S) có phương trình 2 22 xyz xyz 2 4 2 40 và đường thẳng 2 2 14 x yz d. Hai mặt phẳng (P), (Q) chứa đường thẳng d và tiếp xúc với mặt cầu (S) lần lượt tại M, N. Gọi H abc là trung điểm của MN. Khi đó tích abc bằng? + Cho đồ thị hàm số bậc ba 3 2 1 3 y f x ax bx x c và đường thẳng y g x có đồ thị như hình vẽ sau: Biết AB = 5, diện tích hình phẳng giới hạn bởi các đồ thị hàm số y f x y g x và hai đường thẳng x = −1, x = 0 bằng? + Cho khối chóp S ABCD đáy ABCD là hình thang cân AB CD AB CD có hai đường chéo AC BD vuông góc và cắt nhau tại O 1 2 2 2 AB a C D. Biết SO vuông góc với đáy, hai mặt phẳng SAB và SCD vuông góc với nhau. Tính thể tích V của khối chóp S ABCD theo a.
Đề thi thử Toán TN THPT 2022 lần 2 trường THPT Quốc Tuấn - Hải Phòng
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi thử môn Toán ôn thi tốt nghiệp THPT năm học 2021 – 2022 lần 2 trường THPT Quốc Tuấn, thành phố Hải Phòng (mã đề 134). Trích dẫn đề thi thử Toán TN THPT 2022 lần 2 trường THPT Quốc Tuấn – Hải Phòng : + Một người lần đầu gửi vào ngân hàng 100 triệu đồng với kì hạn 3 tháng, lãi suất 2% một quý. Biết rằng nếu không rút tiền ra khỏi ngân hàng thì cứ sau mỗi quý số tiền lãi sẽ được nhập vào gốc để tính lãi cho quý tiếp theo. Sau đúng 6 tháng, người đó gửi thêm 100 triệu đồng với kỳ hạn và lãi suất như trước đó. Tổng số tiền người đó nhận được 1 năm sau khi gửi tiền gần nhất với kết quả nào sau đây? A. 210 triệu. B. 220 triệu. C. 212 triệu. D. 216 triệu. + Cho hàm số bậc ba y f x có đồ thị C1 và hàm số bậc hai y g x có đồ thị C2. Biết C1 và C2 cắt nhau tại các điểm có hoành độ là 1 2 3 đồng thời C1 đi qua điểm A 1 7 và C2 đi qua điểm B 1 1. Tính diện tích hình phẳng giới hạn bởi hai đường C C 1 2. + Một hộp đựng 7 chiếc bút bi đen và 8 chiếc bút bi xanh. Lấy đồng thời và ngẫu nhiên hai chiếc bút từ hộp. Tính xác suất để 2 chiếc bút lấy được có cùng màu?