Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề kiểm tra học kỳ 2 Toán 9 năm 2022 - 2023 sở GDĐT Đồng Nai

THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề kiểm tra chất lượng cuối học kỳ 2 môn Toán 9 năm học 2022 – 2023 sở Giáo dục và Đào tạo tỉnh Đồng Nai; kỳ thi được diễn ra vào sáng thứ Tư ngày 26 tháng 04 năm 2023; đề thi có đáp án và lời giải chi tiết. Trích dẫn Đề kiểm tra học kỳ 2 Toán 9 năm 2022 – 2023 sở GD&ĐT Đồng Nai : + Tính diện tích xung quanh của hình trụ có chiều cao bằng 2 dm và bán kính đáy bằng 3 dm (học sinh không cần vẽ hình khi giải câu này). + Nhân dịp ngày quốc tế hạnh phúc (ngày 20 tháng 3), một siêu thị giảm giá nhiều mặt hàng để kích cầu mua sắm. Giá niêm yết của một đồng hồ và một ống lăn giãn cơ có tổng số tiền là 900 nghìn đồng (chưa giảm giá). Biết trong dịp này, giá một đồng hồ giảm 10% và giá một ống lăn giãn cơ giảm 20% so với giá niêm yết, nên mẹ của bạn Hoa đã mua hai mặt hàng nói trên với tổng số tiền là 780 nghìn đồng. Hỏi giá niêm yết của mỗi mặt hàng nói trên (chưa giảm giá) là bao nhiêu? + Từ điểm A nằm bên ngoài đường tròn (O) vẽ hai tiếp tuyến AB và AC của (O) lần lượt tại B và C. 1) Chứng minh tứ giác ABOC nội tiếp đường tròn. 2) Vẽ đường kính CD của (O), gọi E là giao điểm của AD và (O), biết E khác D. Chứng minh AD.AE = AB2. 3) Gọi H là giao điểm của AO và BC, vẽ đường kính BF của (O). Chứng minh ba điểm E, H, F thẳng hàng.

Nguồn: toanmath.com

Đọc Sách

Đề thi học kì 2 (HK2) lớp 9 môn Toán năm học 2016 2017 sở GD và ĐT Thái Bình
Nội dung Đề thi học kì 2 (HK2) lớp 9 môn Toán năm học 2016 2017 sở GD và ĐT Thái Bình Bản PDF - Nội dung bài viết Đề thi học kì 2 (HK2) lớp 9 môn Toán năm học 2016-2017 sở GD và ĐT Thái Bình Đề thi học kì 2 (HK2) lớp 9 môn Toán năm học 2016-2017 sở GD và ĐT Thái Bình Đề thi học kì 2 môn Toán lớp 9 năm học 2016 - 2017 của sở GD và ĐT Thái Bình bao gồm 5 bài toán tự luận, mỗi bài toán đều có lời giải chi tiết. Một trong những bài toán được trích dẫn trong đề là: + Cho nửa đường tròn có đường kính BC, A là điểm thuộc nửa đường tròn sao cho AB < AC (A khác B). Trên dây cung AC lấy điểm E khác A và C; gọi D, H là hình chiếu vuông góc của A lên BC và BE. 1. Chứng minh hai góc BAD và BHD bằng nhau. 2. Chứng minh BH.CE = BC.DH. 3. Gọi K là giao điểm của DH và AC, phân giác góc CKD cắt HE, CD tại M và N; phân giác góc CBE cắt DH, CE tại P và Q. Chứng minh tam giác KPQ cân và tứ giác MPNQ là hình thoi. Đề thi này đòi hỏi kiến thức và kỹ năng phân tích, suy luận của học sinh. Bằng cách giải quyết các bài toán này, học sinh sẽ phát triển khả năng tư duy logic và sáng tạo trong việc giải quyết vấn đề. Chắc chắn rằng việc tham gia vào việc giải các bài toán trong đề thi này sẽ giúp học sinh rèn luyện kỹ năng toán học một cách hiệu quả.